12

Domain Analysis

Domain analysis, the next stage of development, is concerned with devising a precise, con-
cise, understandable, and correct model of the real world. Before building anything complex,
the builder must understand the requirements. Requirements can be stated in words, but these
are often imprecise and ambiguous. During analysis, we build models and begin to under-
stand the requirements deeply.

To build a domain model, you must interview business experts, examine requirements
statements, and scrutinize related artifacts. You must analyze the implications of the require-
ments and restate them rigorously. It is important to abstract important features first and de-
fer small details until later. The successful analysis model states what must be done, without
restricting how it is done, and avoids implementation decisions.

In this chapter you will learn how to take OO concepts and apply them to construct a
domain model. The model serves several purposes: It clarifies the requirements, it provides
a basis for agreement between the stakeholders and the developers, and it becomes the start-
ing point for design and implementation.

12.1 Overview of Analysis

As Figure 12.1 shows, analysis begins with a problem statement generated during system
conception. The statement may be incomplete or informal: analysis makes it more precise
and exposes ambiguities and inconsistencies. The problem statement should not be taken as
immutable but should serve as a basis for refining the real requirements.

Next, you must understand the real-world system described by the problem statement,
and abstract its essential features into a model. Statements in natural language are often am-
biguous, incomplete, and inconsistent. The analysis model is a precise, concise representa-
tion of the problem that permits answering questions and building a solution. Subsequent
design steps refer to the analysis model, rather than the original vague problem statement.

181



182 Chapter 12 / Domain Analysis

Users
Developers ?eeqnueéstts System Conception
Managers
Problem
Statement
’ User interviews
t Domain knowledge Build Ana[ysis:' _
mol::ilels Domain Analysis
I Rea"WOr'd eXperience App[icali()n Analys,s
f Related systems
Class Model
State Model
Interaction Model
iy

Figure 12.1 Overview of analysis. The problem statement should not be taken as im-
mutable, but rather as a basis for refining the requirements.

Perhaps even more important, the process of constructing a rigorous model of the problem
domain forces the developer to confront misunderstandings early in the development process
while they are still easy to correct.

The analysis model addresses the three aspects of objects: static structure of objects
(class model), interactions among objects (interaction model), and life-cycle histories of ob-
Jects (state model). All three submodels are not equally important in every problem. Almost
all problems have useful class models derived from real-world entities. Problems concerning
reactive control and timing, such as user interfaces and process control, have important state
models. Problems containing significant computation as well as systems that interact with
other systems and different kinds of users have important interaction models.

Analysis is not a mechanical process. The exact representations involve judgment and
in many regards are a matter of art. Most problem statements lack essential information,
which must be obtained from the requestor or from the analyst’s knowledge of the real-world
problem domain. Also there is a choice in the level of abstraction for the model. The analyst
must communicate with the requestor to clarify ambiguities and misconceptions. The anal-
ysis models enable precise communication.

We have divided analysis into two substages. The first, domain analysis, is covered in
this chapter and focuses on understanding the real-world essence of a problem. The second,
application analysis, is covered in the next chapter and builds on the domain model—incor-
porating major application artifacts that are seen by users and must be approved by them.



12.2 Domain Class Model 183

12.2 Domain Class Model

The first step in analyzing the requirements is to construct a domain model. The domain
model shows the static structure of the real-world system and organizes it into workable piec-
es. The domain model describes real-world classes and their relationships to each other. Dur-
ing analysis, the class model precedes the state and interaction models because static
structure tends to be better defined, less dependent on application details, and more stable as
the solution evolves. Information for the domain model comes from the problem statement,
artifacts from related systems, expert knowledge of the application domain, and general
knowledge of the real world. Make sure you consider all information that is available and do
not rely on a single source.

Find classes and associations first, as they provide the overall structure and approach to
the problem. Next add attributes to describe the basic network of classes and associations.
Then combine and organize classes using inheritance. Attempts to specify inheritance direct-
ly without first understanding classes and their attributes can distort the class structure to
match preconceived notions. Operations are usually unimportant in a domain model. The
main purpose of a domain model is to capture the information content of a domain.

It is best to get ideas down on paper before trying to organize them too much, even
though they may be redundant and inconsistent, so as not to lose important details. An initial
analysis model is likely to contain flaws that must be corrected by later iterations. The entire
model need not be constructed uniformly. Some aspects of the problem can be analyzed in
depth through several iterations while other aspects are still sketchy.

You must perform the following steps to construct a domain class model.

Find classes. [12.2.1-12.2.2]

Prepare a data dictionary. [12.2.3]

Find associations. [12.2.4-12.2.5]

Find attributes of objects and links. [12.2.6-12.2.7]
Organize and simplify classes using inheritance. [12.2.8]
Verify that access paths exist for likely queries. [12.2.9]
Iterate and refine the model. [12.2.10]

Reconsider the level of abstraction. [12.2.11]

Group classes into packages. [12.2.12]

12.2.1 Finding Classes

The first step in constructing a class model is to find relevant classes for objects from the ap-
plication domain. Objects include physical entities, such as houses, persons, and machines,
as well as concepts, such as trajectories, seating assignments, and payment schedules. All
classes must make sense in the application domain; avoid computer implementation con-
structs, such as linked lists and subroutines. Not all classes are explicit in the problem state-
ment; some are implicit in the application domain or general knowledge.



184 Chapter 12 / Domain Analysis

As Figure 12.2 shows, begin by listing candidate classes found in the written description
of the problem. Don’t be too selective; write down every class that comes to mind. Classes
often correspond to nouns. For example, in the statement “a reservation system to sell tickets
to performances at various theaters” tentative classes would be Reservation, System, Ticket,
Performance, and Theater. Don’t operate blindly, however. The idea to is capture concepts;
not all nouns are concepts, and concepts are also expressed in other parts of speech.

Requirements Tentative imi Classes
g Extract nouns Elm:!nate |
sources classes spurious classes
Figure 12.2 Finding classes. You can find many classes by considering nouns.
y y g

Don’t worry much about inheritance or high-level classes; first get specific classes right
so that you don’t subconsciously suppress detail in an attempt to fit a preconceived struc-
ture. For example, if you are building a cataloging and checkout system for a library, iden-
tify different kinds of materials, such as books, magazines, newspapers, records, videos,
and so on. You can organize them into broad categories later, by looking for similarities and
differences.

ATM example. Examination of the concepts in the ATM problem statement from Chap-
ter 11 yields the tentative classes shown in Figure 12.3. Figure 12.4 shows additional classes
that do not appear directly in the statement but can be identified from our knowledge of the
problem domain.

Software S:tlu((i,r:g | Cashier | | ATM | |Consortium) | Bank |
Bank | Account | fTransaction\ Cashier Account Transaction

Computer Station Data Data
Central Cash h i

Cor?#; t:?er Cgfd L User | L Cash | | Receipt | System}

Recordkeeping Security | Access | | Cost | [ customer |
Provision Provision

Figure 12.3 ATM classes extracted from problem statement nouns

Communications Transaction
Line Log

Figure 12.4 ATM classes identified from knowledge of problem domain



12.2 Domain Class Model 185

12.2.2 Keeping the Right Classes

Now discard unnecessary and incorrect classes according to the following criteria. Figure
12.5 shows the classes eliminated from the ATM example.

Bad Classes

irrelevant

attribute

Account Receipt

Data

vague

Security Cash
Provision - implementation
Transaction

Data Transaction

Log

Recordkeeping
Provision

Banking
Network

redundant

Communications
Line

Good Classes
Bank Cash i
Account| | ATM ] [ Bank J Comapnuter Cg?d Cashier
Cashier Central [Consortium| | Customer | |Transaction|

Station Computer

Figure 12.5 Eliminating unnecessary classes from ATM problem

B Redundant classes. If two classes express the same concept, you should keep the most
descriptive name. For example, although Customer might describe a person taking an
airline flight, Passenger is more descriptive. On the other hand, if the problem concerns
contracts for a charter airline, Customer is also an appropriate word, since a contract
might involve several passengers.

ATM example. Customer and User are redundant; we retain Customer because it
is more descriptive.

W Irrelevant classes. If a class has little or nothing to do with the problem, eliminate it.
This involves judgment, because in another context the class could be important. For ex-
ample, in a theater ticket reservation system, the occupations of the ticket holders are
irrelevant, but the occupations of the theater personnel may be important.

ATM example. Apportioning Cost is outside the scope of the ATM software.

B Vague classes. A class should be specific. Some tentative classes may have ill-defined
boundaries or be too broad in scope.



186 Chapter 12 / Domain Analysis

ATM example. Recordkeeping Provision is vague and is handled by Transaction.
In other applications, this might be included in other classes, such as StockSales, Tele-
phoneCalls, or MachineFailures.

B Attributes. Names that primarily describe individual objects should be restated as at-
tributes. For example, name, birthdate, and weight are usually attributes. If the indepen-
dent existence of a property is important, then make it a class and not an attribute. For
example, an employee’s office would be a class in an application to reassign offices af-
ter a reorganization.

ATM example. AccountData is underspecified but in any case probably describes
an account. An ATM dispenses cash and receipts, but beyond that cash and receipts are
peripheral to the problem, so they should be treated as attributes.

@ Operations. If a name describes an operation that is applied to objects and not manip-
ulated in its own right, then it is not a class. For example, a telephone call is a sequence
of actions involving a caller and the telephone network. If we are simply building tele-
phones, then Call is part of the state model and not a class.

An operation that has features of its own should be modeled as a class, however.
For example, in a billing system for telephone calls a Call would be an important class
with attributes such as date, time, origin, and destination.

B Roles. The name of a class should reflect its intrinsic nature and not a role that it plays
in an association. For example, Owner would be a poor name for a class in a car manu-
facturer’s database. What if a list of drivers is added later? What about persons who
lease cars? The proper class is Person (or possibly Customer), which assumes various
different roles, such as owner, driver, and lessee.

One physical entity sometimes corresponds to several classes. For example, Person
and Employee may be distinct classes in some circumstances and redundant in others.
From the viewpoint of a company database of employees, the two may be identical. In
a government tax database, a person may hold more than one job, so it is important to
distinguish Person from Employee; each person can correspond to zero or more instanc-
es of employee information.

8 Implementation constructs. Eliminate constructs from the analysis model that are ex-
traneous to the real world. You may need them later during design, but not now. For ex-
ample, CPU, subroutine, process, algorithm, and interrupt are implementation con-
structs for most applications, although they are legitimate classes for an operating sys-
tem. Data structures, such as linked lists, trees, arrays, and tables, are almost always
implementation constructs.

ATM example. Some tentative classes are really implementation constructs.
TransactionLog is simply the set of transactions; its exact representation is a design is-
sue. Communication links can be shown as associations; CommunicationsLine is simply
the physical implementation of such a link.

B Derived classes. As a general rule, omit classes that can be derived from other classes.
If a derived class is especially important, you can include it, but do so only sparingly.
Mark all derived classes with a preceding slash (‘/’) in the class name.



12.2 Domain Class Model 187

12.2.3 Preparing a Data Dictionary

Isolated words have too many interpretations, so prepare a data dictionary for all modeling
elements. Write a paragraph precisely describing each class. Describe the scope of the class
within the current problem, including any assumptions or restrictions on its use. The data
dictionary also describes associations, attributes, operations, and enumeration values. Figure
12.6 shows a data dictionary for the classes in the ATM problem.

12.2.4 Finding Associations

Next, find associations between classes. A structural relationship between two or more class-
es is an association. A reference from one class to another is an association. As we discussed
in Chapter 3, attributes should not refer to classes; use an association instead. For example,
class Person should not have an attribute employer relate class Person and class Company
with association WorksFor. Associations show relationships between classes at the same lev-
el of abstraction as the classes themselves, while object-valued attributes hide dependencies
and obscure their two-way nature. Associations can be implemented in various ways, but
such implementation decisions should be kept out of the analysis model to preserve design
freedom.

Associations often correspond to stative verbs or verb phrases. These include physical
location (NextTo, PartOf, ContainedlIn), directed actions (Drives), communication (TalksTo),
ownership (Has, PartOf), or satisfaction of some condition (WorksFor, MarriedTo, Manag-
es). Extract all the candidates from the problem statement and get them down on paper first;
don’t try to refine things too early. Again, don’t treat grammatical forms blindly; the idea is
to capture relationships, however they are expressed in natural language.

ATM example. Figure 12.7 shows associations. The majority are taken directly from
verb phrases in the problem statement. For some associations the verb phrase is implicit in
the statement. Finally, some associations depend on real-world knowledge or assumptions.
These must be verified with the requestor, as they are not in the problem statement.

12.2.5 Keeping the Right Associations

Now discard unnecessary and incorrect associations, using the following criteria.

B Associations between eliminated classes. If you have eliminated one of the classes
in the association, you must eliminate the association or restate it in terms of other
classes.

ATM example. We can eliminate Banking network includes cashier stations and
ATMs, ATM dispenses cash, ATM prints receipts, Banks provide software, Cost appor-
tioned to banks, System provides recordkeeping, and System provides security.

W Irrelevant or implementation associations. Eliminate any associations that are out-
side the problem domain or deal with implementation constructs.
ATM example. For example, System handles concurrent access is an implementa-
tion concept. Real-world objects are inherently concurrent; it is the implementation of
the access algorithm that must be concurrent.



188 Chapter 12 / Domain Analysis

Account—a single account at a bank against which transactions can be applied. Ac-
counts may be of various types, such as checking or savings. A customer can hold
more than one account.

ATM—a station that allows customers to enter their own transactions using cash
cards as identification. The ATM interacts with the customer to gather transaction in-
formation, sends the transaction information to the central computer for validation
and processing, and dispenses cash to the user. We assume that an ATM need not
operate independently of the network.

Bank—a financial institution that holds accounts for customers and issues cash
cards authorizing access to accounts over the ATM network.

BankComputer—the computer owned by a bank that interfaces with the ATM net-
work and the bank’s own cashier stations. A bank may have its own internal comput-
ers to process accounts, but we are concerned only with the one that talks to the ATM
network.

CashCard—a card assigned to a bank customer that authorizes access of accounts
using an ATM machine. Each card contains a bank code and a card number. The
bank code uniquely identifies the bank within the consortium. The card number de-
termines the accounts that the card can access. A card does not necessarily access
all of a customer’s accounts. Each cash card is owned by a single customer, but mul-
tiple copies of it may exist, so the possibility of simultaneous use of the same card
from different machines must be considered.

Cashier—an employee of a bank who is authorized to enter transactions into cashier
stations and accept and dispense cash and checks to customers. Transactions,
cash, and checks handled by each cashier must be logged and properly accounted
for.

CashierStation—a station on which cashiers enter transactions for customers.
Cashiers dispense and accept cash and checks; the station prints receipts. The cash-
ier station communicates with the bank computer to validate and process the trans-
actions.

CentralComputer—a computer operated by the consortium that dispatches transac-
tions between the ATMs and the bank computers. The central computer validates
bank codes but does not process transactions directly.

Consortium—an organization of banks that commissions and operates the ATM net-
work. The network handles transactions only for banks in the consortium.

Customer—the holder of one or more accounts in a bank. A customer can consist of
one or more persons or corporations; the correspondence is not relevant to this prob-
lem. The same person holding an account at a different bank is considered a different
customer.

Transaction—a single integral request for operations on the accounts of a single
customer. We specified only that ATMs must dispense cash, but we should not pre-
clude the possibility of printing checks or accepting cash or checks. We may also
want to provide the flexibility to operate on accounts of different customers, although
it is not required yet.

Figure 12.6 Data dictionary for ATM classes. Prepare a data dictionary
for all modeling elements.



12.2 Domain Class Model 189

Verb phrases

Banking network includes cashier stations and ATMs
Consortium shares ATMs
Bank provides bank computer
Bank computer maintains accounts
Bank computer processes transaction against account
Bank owns cashier station
Cashier station communicates with bank computer
Cashier enters transaction for account
ATMs communicate with central computer about transaction
Central computer clears transaction with bank
ATM accepts cash card
ATM interacts with user
ATM dispenses cash
ATM prints receipts
System handles concurrent access
Banks provide software
Cost apportioned to banks
Implicit verb phrases
Consortium consists of banks
Bank holds account
Consortium owns central computer
System provides recordkeeping
System provides security
Customers have cash cards

Knowledge of problem domain

Cash card accesses accounts
Bank employs cashiers

Figure 12.7 Associations from ATM problem statement

B Actions. An association should describe a structural property of the application domain,
not a transient event. Sometimes. a requirement expressed as an action implies an un-
derlying structural relationship and you should rephrase it accordingly.

ATM example. ATM accepts cash card describes part of the interaction cycle be-
tween an ATM and a customer, not a permanent relationship between ATMs and cash
cards. We can also eliminate ATM interacts with user. Central computer clears transac-
tion with bank describes an action that implies the structural relationship Central com-
puter communicates with bank.

B Ternary associations. You can decompose most associations among three or more
classes into binary associations or phrase them as qualified associations. If a term in a
ternary association is purely descriptive and has no identity of its own, then the term is
an attribute on a binary association. Association Company pays salary to person can be
rephrased as binary association Company employs person with a salary value for each
Company-Person link.

Occasionally, an application will require a general ternary association. Professor
teaches course in room cannot be decomposed without losing information. We have not
encountered associations with four or more classes in our work.



190 Chapter 12 / Domain Analysis

ATM example. Bank computer processes transaction against account can be bro-
ken into Bank computer processes transaction and Transaction concerns account. Cash-
ler enters transaction for account can be broken similarly. ATMs communicate with cen-
tral computer about transaction is really the binary associations ATMs communicate
with central computer and Transaction entered on ATM.

B Derived associations. Omit associations that can be defined in terms of other associa-
tions, because they are redundant. For example, GrandparentOf can be defined in terms
of a pair of ParentOf associations. Also omit associations defined by conditions on at-
tributes. For example, youngerThan expresses a condition on the birth dates of two per-
sons, not additional information.

As much as possible, classes, attributes, and associations in the class model should
represent independent information. Multiple paths between classes sometimes indicate
derived associations that are compositions of primitive associations. Consortium shares
ATM:s is a composition of the associations Consortium owns central computer and Cen-
tral computer communicates with ATMs.

Be careful, because not all associations that form multiple paths between classes in-
dicate redundancy. Sometimes the existence of an association can be derived from two
or more primitive associations and the multiplicity can not. Keep the extra association
if the additional multiplicity constraint is important. For example, in Figure 12.8 a com-
pany employs many persons and owns many computers. Each employee is assigned
zero or more computers for the employee’s personal use; some computers are for public
use and are not assigned to anyone. The multiplicity of the AssignedTo association can-
not be deduced from the Employs and Owns associations.

Empl
Company ] mploys " Person
1 0.1
Owns s * AssignedTo
Computer

Figure 12.8 Nonredundant associations. Not all associations that form
multiple paths between classes indicate redundancy.

Although derived associations do not add information, they are useful in the real
world and in design. For example, kinship relationships such as Uncle, MotherinLaw,
and Cousin have names because they describe common relationships considered impor-
tant within our society. If they are especially important, you may show derived associ-
ations in class diagrams, but put a slash in front of their names to indicate their depen-
dent status and to distinguish them from fundamental associations.

Further specify the semantics of associations as follows:

M Misnamed associations. Don’t say how or why a situation came about, say what it is.
Names are important to understanding and should be chosen with great care.



12.2 Domain Class Model 191

ATM example. Bank computer maintains accounts is a statement of action; re-
phrase as Bank holds account.

@ Association end names. Add association end names where appropriate. For example,
in the WorksFor association a Company is an employer with respect to a Person and a
Person is an employee with respect to a Company. If there is only one association be-
tween a pair of classes and the meaning of the association is clear, you may omit asso-
ciation end names. For example, the meaning of ATMs communicate with central com-
puter is clear from the class names. An association between two instances of the same
class requires association end names to distinguish the instances. For example, the as-
sociation Person manages person would have the end names boss and worker.

B Qualified associations. Usually a name identifies an object within some context; most
names are not globally unique. The context combines with the name to uniquely identify
the object. For example, the name of a company must be unique within the chartering
state but may be duplicated in other states (there once was a Standard Oil Company in
Ohio, Indiana, California, and New Jersey). The name of a company qualifies the asso-
ciation State charters company; State and company name uniquely identity Company.
A qualifier distinguishes objects on the “many” side of an association.

ATM example. The qualifier bankCode distinguishes the different banks in a con-
sortium. Each cash card needs a bank code so that transactions can be directed to the
appropriate bank.

B Multiplicity. Specify multiplicity. but don’t put too much effort into getting it right, as
multiplicity often changes during analysis. Challenge multiplicity values of “one.” For
example, the association one Manager manages many employees precludes matrix man-
agement or an employee with divided responsibilities. For multiplicity values of
“many” consider whether a qualifier is needed; also ask if the objects need to be ordered
in some way.

B Missing associations. Add any missing associations that are discovered.

ATM example. We overlooked Transaction entered on cashier station, Customers
have accounts, and Transaction authorized by cash card. If cashiers are restricted to spe-
cific stations, then the association Cashier authorized on cashier station would be need-
ed.

B Aggregation. Aggregation is important for certain kinds of applications, especially for
those involving mechanical parts and bills of material. For other applications aggrega-
tion is relatively minor and it can be unclear whether to use aggregation or ordinary as-
sociation. For these other applications, don’t spend much time trying to distinguish be-
tween association and aggregation. Aggregation is just an association with extra conno-
tations. Use whichever seems more natural at the time and move on.

ATM example. We decide that a Bank is a part of @ Consortium and indicate the
relationship with aggregation.

ATM example. Figure 12.9 shows a class diagram with the remaining associations. We have

included only significant association names. Note that we have split Transaction into Re-



192 Chapter 12 / Domain Analysis

moteTransaction and CashierTransaction to accommodate different associations. The dia-
gram shows multiplicity values. We could have made some analysis decisions differently.
Don’t worry; there are many possible correct models of a problem. We have shown the anal-
ysis process in small steps; with practice, you can elide several steps together in your mind.

Consortium bankCode)<>— 0.1 Bank ! * Account * Customer
1

1 NTET TRRE 1
Employs
| I
Communicates *
Central With Bank Cashi
Computer [ + | Computer ashier
1 I !
CommunicatesWith EnteredBy
* * * *
Communicates Cashier | EnteredOn Cashier
With Station | % | Transaction
*
ATM EnteredOn Remote |- CashCard *
] « | Transaction

*  AuthorizedBy |

Figure 12.9 Initial class diagram for ATM system

12.2.6 Finding Attributes

Next find attributes. Attributes are data properties of individual objects, such as weight, ve-
locity, or color. Attribute values should not be objects; use an association to show any rela-
tionship between two objects.

Attributes usually correspond to nouns followed by possessive phrases, such as “the col-
or of the car” or “the position of the cursor.” Adjectives often represent specific enumerated
attribute values, such as red, on, or expired. Unlike classes and associations, attributes are
less likely to be fully described in the problem statement. You must draw on your knowledge
of the application domain and the real world to find them. You can also find attributes in the
artifacts of related systems. Fortunately, attributes seldom affect the basic structure of the
problem.

Do not carry discovery of attributes to excess. Only consider attributes directly relevant
to the application. Get the most important attributes first; you can add fine details later. Dur-



12.2 Domain Class Model 193

ing analysis, avoid attributes that are solely for implementation. Be sure to give each attribute
a meaningful name.

Normally, you should omit derived attributes. For example. age is derived from birth-
date and currentTime (which is a property of the environment). Do not express derived at-
tributes as operations, such as getAge, although you may eventually implement them that
way.

Also look for attributes on associations. Such an attribute is a property of the link be-
tween two objects, rather than being a property of an individual object. For example, the
many-to-many association between Stockholder and Company has an attribute of numberOf-
Shares.

12.2.7 Keeping the Right Attributes
Eliminate unnecessary and incorrect attributes with the following criteria.

W Objects. If the independent existence of an element is important, rather than just its val-
ue, then it is an object. For example, boss refers to a class and salary is an attribute. The
distinction often depends on the application. For example. in a mailing list ciry might be
considered as an attribute, while in a census Cizy would be a class with many attributes
and relationships of its own. An element that has features of its own within the given
application is a class.

M Qualifiers. If the value of an attribute depends on a particular context, then consider re-
stating the attribute as a qualifier. For example, emploveeNumber is not a unique prop-
erty of a person with two jobs: it qualifies the association Company employs person.

8 Names. Names are often better modeled as qualifiers rather than attributes. Test: Does the
name select unique objects from a set? Can an object in the set have more than one name?
If so, the name qualifies a qualified association. If a name appears to be unique in the
world, you may have missed the class that is being qualified. For example, department-
Name may be unique within a company, but eventually the program may need to deal with
more than one company. It is better to use a qualified association immediately.
A name is an attribute when its use does not depend on context, especially when it
need not be unique within some set. Names of persons, unlike names of companies, may
be duplicated and are therefore attributes.

B Identifiers. OO languages incorporate the notion of an object identifier for unambigu-
ously referencing an object. Do not include an attribute whose only purpose is to iden-
tify an object, as object identifiers are implicit in class models. Only list attributes that
exist in the application domain. For example, accountCode is a genuine attribute; Banks
assign accountCodes and customers see them. In contrast, you should not list an internal
transactionID as an attribute, although it may be convenient to generate one during im-
plementation.

B Attributes on associations. If a value requires the presence of a link, then the property
is an attribute of the association and not of a related class. Attributes are usually obvious
on many-to-many associations; they cannot be attached to either class because of their



194

Chapter 12 / Domain Analysis

multiplicity. For example, in an association between Person and Club the attribute mem-
bershipDate belongs to the association, because a person can belong to many clubs and
a club can have many members. Attributes are more subtle on one-to-many associations
because they could be attached to the “many” class without losing information. Resist
the urge to attach them to classes, as they would be invalid if multiplicity changed. At-
tributes are also subtle on one-to-one associations.

Internal values. If an attribute describes the internal state of an object that is invisible
outside the object, then eliminate it from the analysis.

Fine detail. Omit minor attributes that are unlikely to affect most operations.

Discordant attributes. An attribute that seems completely different from and unrelated
to all other attributes may indicate a class that should be split into two distinct classes.
A class should be simple and coherent. Mixing together distinct classes is one of the ma-
jor causes of troublesome models. Unfocused classes frequently result from premature
consideration of implementation decisions during analysis.

Boolean attributes. Reconsider all boolean attributes. Often you can broaden a boolean
attribute and restate it as an enumeration [Coad-95].

ATM example. We apply these criteria to obtain attributes for each class (Figure 12.10).
Some tentative attributes are actually qualifiers on associations. We consider several aspects
of the model.

BankCode and cardCode are present on the card. Their format is an implementation de-
tail, but we must add a new association Bank issues CashCard. CardCode is a qualifier
on this association; bankCode is the qualifier of Bank with respect to Consortium.

The computers do not have state relevant to this problem. Whether the machine is up or
down is a transient attribute that is part of implementation.

Avoid the temptation to omit Consortium, even though it is currently unique. It provides
the context for the bankCode qualifier and may be useful for future expansion.

Keep in mind that the ATM problem is just an example. Real applications, when fleshed out,
tend to have many more attributes per class than Figure 12.10 shows.

12.2.8 Refining with Inheritance

The next step is to organize classes by using inheritance to share common structure. Inheritance
can be added in two directions: by generalizing common aspects of existing classes into a su-
perclass (bottom up) or by specializing existing classes into multiple subclasses (top down).

Bottom-up generalization. You can discover inheritance from the bottom up by
searching for classes with similar atiributes, associations, and operations. For each gen-
eralization, define a superclass to share common features. You may have to slightly re-
define some attributes or classes to fit in. This is acceptable, but don’t push too hard if
it doesn’t fit; you may have the wrong generalization. Some generalizations will suggest
themselves based on an existing taxonomy in the real world; use existing concepts
whenever possible. Symmetry will suggest missing classes.



12.2 Domain Class Model 195

o Issues
card
Code :
N accoun
Consortium b%r},kde\/—“— Bank | Code |; . Account Customer
P 0l ) * 1
! name [employee balance name
1 <tation Code creditLimit address
Code 1 type 1
I Employs 1| *
1 1 0..1
Central 1 0.1 Bank Cashier
Computer b%nkd Computer
ode name
. Communicates :
station . station 1
Code with Code
: : EnteredBy
CommunicatesWith
* *
0.1 0.1 CashierTransaction
Communicates CashierStation | EnteredOn | kind
ith 1 x| dateTime
S amount
0.1
ATM EnteredOn | RemoteTransaction [
*
cashOnHand | ! # | kind CashCard [ —
dateTime * : ! *
amount AuthorizedBy | password
0..1

Figure 12.10 ATM class model with attributes

ATM example. RemoteTransaction and CashierTransaction are similar, except in
their initiation, and can be generalized by Transaction. On the other hand, CentralCom-
puter and BankComputer have little in common for purposes of the ATM example.

Bm Top-down specialization. Top-down specializations are often apparent from the appli-
cation domain. Look for noun phrases composed of various adjectives on the class
name: fluorescent lamp, incandesceni lamp; fixed menu, pop-up menu, sliding menu.
Avoid excessive refinement. If proposed specializations are incompatible with an exist-
ing class, the existing class may be improperly formulated.

B Generalization vs. enumeration. Enumerated subcases in the application domain are
the most frequent source of specializations. Often, it is sufficient to note that a set of
enumerated subcases exists, without actually listing them. For example, an ATM ac-
count could be refined into CheckingAccount and SavingsAccount. While undoubtedly
useful in some banking applications, this distinction does not affect behavior within the
ATM application; fype can be made a simple attribute of Account.



196 Chapter 12 / Domain Analysis

8 Multiple inheritance. You can use multiple inheritance to increase sharing, but only if
necessary, because it increases both conceptual and implementation complexity.

B Similar associations. When the same association name appears more than once with
substantially the same meaning, try to generalize the associated classes. Sometimes the
classes have nothing in common but the association, but more often you will uncover an
underlying generality that you have overlooked.

ATM example. Transaction is entered on both CashierStation and ATM; EntrySta-
tion generalizes CashierStation and ATM.

B Adjusting the inheritance level. You must assign attributes and associations to specific
classes in the class hierarchy. Assign each one to the most general class for which it is
appropriate. You may need some adjustment to get everything right. Symmetry may
suggest additional attributes to distinguish among subclasses more clearly.

Figure 12.11 shows the ATM class model after adding inheritance.

12.2.9 Testing Access Paths

Trace access paths through the class model to see if they yield sensible results. Where a
unique value is expected, is there a path yielding a unique result? For multiplicity “many” is
there a way to pick out unique values when needed? Think of questions you might like to
ask. Are there useful questions that cannot be answered? They indicate missing information.
If something that seems simple in the real world appears complex in the model, you may
have missed something (but make sure that the complexity is not inherent in the real world).

It can be acceptable to have classes that are “disconnected” from other classes. This usu-
ally occurs when the relationship between a disconnected class and the remainder of the
model is diffuse. However, check disconnected classes to make sure you have not overlooked
any associations.

ATM example. A cash card itself does not uniquely identify an account, so the user
must choose an account somehow. If the user supplies an account type (savings or checking),
each card can access at most one savings and one checking account. This is probably reason-
able, and many cash cards actually work this way, but it limits the system. The alternative is
to require customers to remember account numbers. If a cash card accesses a single account,
then transfers between accounts are impossible.

We have assumed that the ATM network serves a single consortium of banks. Real cash
machines today often serve overlapping networks of banks and accept credit cards as well as
cash cards. The model would have to be extended to handle that situation. We will assume
that the customer is satisfied with this limitation on the system.

12.2.10 Iterating a Class Model

A class model is rarely correct after a single pass. The entire software development process
is one of continual iteration; different parts of a model are often at different stages of com-
pletion. If you find a deficiency, go back to an earlier stage if necessary to correct it. Some
refinements can come only after completing the state and interaction models.

There are several signs of missing classes.



12.2 Domain Class Model 197
EntryStation Transaction
1 EnteredOn # b—
kind
[} dateTime
[ ! amount
ATM CashierStation | 0-1 [
cashOnHand
o 0.1 Cashier Remote
- Transaction Transaction
CommunicatesWith CommunicatesWith ¥ ¥
| | EntefedBy
T 1
stationCode f_stationCodeT -
Central 1 0.1l Bank Cashier .
Computer @—‘ Computer name AuthorigedBy
Communicates 0..1
1 With I
Employs
Issues 0..1 :
CashCard
Customer " password
| .
- name *
| Stgggg | address
employee
! Bank | Cods = [— !
Consortium bankCode name |{card *
| 0.1 Code | |
account Account |*
Code
T 0.1 | balance
creditLimit | !
type

Figure 12.11 ATM class model with attributes and inheritance

ent.

one part may then fit in cleanly.

missing superclass that unites them.

Asymmetries in associations and generalizations. Add new classes by analogy.

Disparate attributes and operations on a class. Split a class so that each part is coher-
Difficulty in generalizing cleanly. One class may be playing two roles. Split it up and
Duplicate associations with the same name and purpose. Generalize to create the

A role that substantially shapes the semantics of a class. Maybe it should be a sepa-

rate class. This often means converting an association into a class. For example, a person



198 Chapter 12 / Domain Analysis

can be employed by several companies with different conditions of employment at each;
Employee is then a class denoting a person working for a particular company, in addition
to class Person and Company.

Also look out for missing associations.

B Missing access paths for operations. Add new associations so that you can answer
queries.
Another concern is superfluous model elements.

B Lack of attributes, operations, and associations on a class. Why is the class needed?
Avoid inventing subclasses merely to indicate an enumeration. If proposed subclasses
are otherwise identical, mark the distinction using an attribute.

B Redundant information. Remove associations that do not add new information or
mark them as derived.

And finally you may adjust the placement of attributes and associations.

B Association end names that are too broad or too narrow for their classes. Move the
association up or down in the class hierarchy.

W Need to access an object by one of its attribute values. Consider a qualified associa-
tion.

In practice, model building is not as rigidly ordered as we have shown. You can combine sev-
eral steps, once you are experienced. For example, you can find candidate classes, reject the
incorrect ones without writing them down, and add them to the class diagram together with
their associations. You can take some parts of the model through several steps and develop
them in some detail, while other parts are still sketchy. You can interchange the order of steps
when appropriate. If you are just learning class modeling. however. we recommend that you
follow the steps in full detail the first few times.

ATM example. CashCard really has a split personality—it is both an authorization unit
within the bank allowing access to the customer’s accounts and also a piece of plastic data that
the ATM reads to obtain coded IDs. In this case, the codes are actually part of the real world.
not just computer artifacts; the codes, not the cash card, are communicated to the central com-
puter. We should split cash card into two classes: CardAuthorization, an access right to one
or more customer accounts; and CashCard, a piece of plastic that contains a bank code and a
cash card number meaningful to the bank. Each card authorization may have several cash
cards, each containing a serial number for security reasons. The card code, present on the
physical card, identifies the card authorization within the bank. Each card authorization iden-
tifies one or more accounts—for example, one checking account and one savings account.

Transaction is not general enough to permit transfers between accounts because it con-
cerns only a single account. In general, a Transaction consists of one or more updates on in-
dividual accounts. An update is a single action (withdrawal, deposit, or query) on a single
account. All updates in a singie transaction must be processed together as an atomic unit; if
any one fails, then they all are canceled.

The distinction between Bank and BankComputer and between Consortium and Cen-
tralComputer doesn’t seem to affect the analysis. The fact that communications are pro-



12.2 Domain Class Model 199

cessed by computers is actually an implementation artifact. Merge BankComputer into Bank
and CentralComputer into Consortium.
Customer doesn’t seem to enter into the analysis so far. However, when we consider op-
erations to open new accounts, it may be an important concept, so leave it alone for now.
Figure 12.12 shows a revised class diagram that is simpler and cleaner.

Transaction @————
EnteredOn * - 1
dateTime
*
Update
1
amount
EntryStation Cashier Remote kind
Transaction Transaction "
* *
EnteredBy
ATM CashierStation 1
AuthorjzedBy
cashOnHand 0.1 | Cashier
0.1 -
0.1 name
|
Employs Issues 0..1 Card
| | Authorization
station i CashCard password
Code Stéggg 1 STV % 1| limit
" serialNumber
Consortium |[pank Ol 0-1 Bank e’é‘ﬁé"é""e CIE.
Code I
name card
acoount [20de 1 Customer
Code
: Account [* 17 oo
0-1 M alance address
creditLimit |x
type

Figure 12.12 ATM class model after further revision

12.2.11 Shifting the Level of Abstraction

So far in analysis, we have taken the problem statement quite literally. We have regarded
nouns and verbs in the problem description as direct analogs of classes and associations. This
is a good way to begin analysis, but it does not always suffice. Sometimes you must raise the
level of abstraction to solve a problem. You should be doing this throughout as you build a
model, but we put in an explicit step to make sure you do not overlook abstraction.



200 Chapter 12 / Domain Analysis

For example, we encountered one application in which the developers had separate
classes for IndividualContributor, Supervisor, and Manager. IndividualContributors report
to Supervisors and Supervisors report to Managers. This model certainly is correct, but it
suffers from some problems. There is much commonality between the three classes—the
only difference is the reporting hierarchy. For example, they all have phone numbers and ad-
dresses. We could handle the commonality with a superclass, but that only makes the model
larger. An additional problem arose when we talked to the developers and they said they
wanted to add another class for the persons to whom managers reported.

Figure 12.13 shows the original model and an improved model that is more abstract. In-
stead of “hard coding” the management hierarchy in the model, we can “soft code™ it with
an association between boss and worker. A person who has an employveeType of ““individual-
Contributor™ is a worker who reports to another person with an employeeType of “supervi-
sor.” Similarly, a person who is a supervisor reports to a person who is a manager. In the
improved model a worker has an optional boss, because the reporting hierarchy eventually
stops. The improved model is smaller and more flexible. An additional reporting level does
not change the model’s structure; it merely alters the data that is stored.

IndividualContributor

®
I
Supervisor
T Person 20188
" employeeType |
anager / reportingLevel worker
Original model Improved model that is more abstract

Figure 12.13 Shifting the level of abstraction. Abstraction makes a model more
complex but can increase flexibility and reduce the number of classes.

One way that you can take advantage of abstraction is by thinking in terms of patterns.
Different kinds of patterns apply to the different development stages, but here we are inter-
ested in patterns for analysis. A pattern distills the knowledge of experts and provides a prov-
en solution to a general problem. For example, the right side of Figure 12.13 is a pattern for
modeling a management hierarchy. Whenever we encounter the need for a management hi-
erarchy, we immediately think in terms of the pattern and place it in our application model.
The use of tried and tested patterns gives us the confidence of a sound approach and boosts
our productivity in building models.

ATM example. We have already included some abstractions in the ATM model. We dis-
tinguished between a CashCard and a CardAuthorization. Furthermore, we included the no-
tion of transactions rather than trying to list each possible kind of interaction.



12.3 Domain State Model 201

12.2.12 Grouping Classes into Packages

The last step of class modeling is to group classes into packages. A package is a group of
elements (classes, associations, generalizations, and lesser packages) with a common theme.
Packages organize a model for convenience in drawing, printing, and viewing. Furthermore,
when you place classes and associations in a package. you are making a semantic statement.
Generally speaking. classes in the same package are more closely related than classes in dif-
ferent packages.

Normally you should restrict cach association to a single package, but you can repeat
some classes in different packages. To assign classes to packages, look for cut points— a cut
point is a class that is the sole connection between two otherwise disconnected parts of a
model. Such a class forms the bridge between two packages. For example, in a file manage-
ment system, a File is the cut point between the directory structure and the file contents. Try
to choose packages to reduce the number of crossovers in the class diagrams. With a little
care, you can draw most class diagrams as planar graphs, without crossing lines.

Reuse a package from a previous design if possible, but avoid forcing a fit. Reuse 1s eas-
iest when part of the problem domain matches a previous problem. If the new problem is
similar to a previous problem but different, you may have to extend the original model to en-
compass both problems. Use your judgment about whether this is better than building a new
model.

ATM example. The current model is small and would not require breakdown into pack-
ages, but it could serve as a core for a more detailed model. The packages might be:

B tellers—<cashier, entry station, cashier station, ATM

B accounts—account, cash card, card authorization, customer, transaction, update, cashier
transaction, remote transaction

B banks—consortium, bank

Each package could add details. The account package could contain varieties of transactions.

information about customers, interest payments, and fees. The bank package could contain

information about branches, addresses, and cost allocations.

12.3 Domain State Model

Some domain objects pass through qualitatively distinct states during their lifetime. There
may be different constraints on attribute values, different associations or multiplicities in the
various states, different operations that may be invoked, different behavior of the operations,
and so on. It is often useful to construct a state diagram of such a domain class. The state
diagram describes the various states the object can assume, the properties and constraints of
the object in various states, and the events that take an object from one state to another.

Most domain classes do not require state diagrams and can be adequately described by
a list of operations. For the minority of classes that do exhibit distinct states, however, a state
model can help in understanding their behavior.



202 Chapter 12 / Domain Analysis

First identify the domain classes with significant states and note the states of each class.
Then determine the events that take an object from one state to another. Given the states and
the events, you can build state diagrams for the affected objects. Finally, evaluate the state
diagrams to make sure they are complete and correct.

The following steps are performed in constructing a domain state model.
Identity domain classes with states. [12.3.1]

Find states. [12.3.2]

Find events. [12.3.3]

Build state diagrams. [12.3.4]

Evaluate state diagrams. [12.3.5]

12.3.1 Identifying Classes with States

Examine the list of domain classes for those that have a distinct life cycle. Look for classes
that can be characterized by a progressive history or that exhibit cyclic behavior. Identify the
significant states in the life cycle of an object. For example, a scientific paper for a journal
goes from Being written to Under consideration (o Accepted or Rejected. There can be some
cycles, for example, if the reviewers ask for revisions, but basically the life of this object is
progressive. On the other hand, an airplane owned by an airline cycles through the states of
Maintenance, Loading, Flving, and Unloading. Not every state occurs in every cycle, and
there are probably other states. but the life of this object is cyclic. There are also classes
whose life cycle is chaotic, but most classes with states are either progressive or cyclic.

ATM example. Account is an important business concept, and the appropriate behavior
for an ATM depends on the state of an Account. The life cycle for Account is a mix of pro-
gressive and cycling to and from problem states. No other ATM classes have a significant
domain state model.

12.3.2 Finding States

List the states for each class. Characterize the objects in each class—the attribute values that
an object may have, the associations that it may participate in and their multiplicities, at-
tributes and associations that are meaningful only in certain states, and so on. Give each state
a meaningful name. Avoid names that indicate how the state came about; try to directly de-
scribe the state.

Don’t focus on fine distinctions among states, particularly quantitative differences, such
as small, medium, or large. States should be based on qualitative differences in behavior, at-
tributes, or associations.

It is unnecessary to determine all the states before examining events. By looking at
events and considering transitions among states, missing states will become clear.

ATM example. Here are some states for an Account: Normal (ready for normal access),
Closed (closed by the customer but still on file in the bank records), Overdrawn (customer
withdrawals exceed the balance in the account), and Suspended (access to the account is
blocked for some reason).



12.3 Domain State Model 203

12.3.3 Finding Events

Once you have a preliminary set of states, find the events that cause transitions among states.
Think about the stimuli that cause a state to change. In many cases, you can regard an event
as completing a do-activity. For example, if a technical paper is in the state Under consider-
ation, then the state terminates when a decision on the paper is reached. In this case, the de-
cision can be positive (Accept paper) or negative (Reject paper). In cases of completing a do-
activity, other possibilities are often possible and may be added in the future—for example,
Conditionally accept with revisions.

You can find other events by thinking about taking the object into a specific state. For
example, if you lift the receiver on a telephone, it enters the Dialing state. Many telephones
have pushbuttons that invoke specific functions. If you press the redial button, the phone
transmits the number and enters the Calling state. If you press the program button, it enters
the Programming state.

There are additional events that occur within a state and do not cause a transition. For
the domain state model you should focus on events that cause transitions among states. When
you discover an event, capture any information that it conveys as a list of parameters.

ATM example. Important events include: close account, withdraw excess funds, re-
peated incorrect PIN, suspected fraud, and administrative action.

12.3.4 Building State Diagrams

Note the states to which each event applies. Add transitions to show the change in state
caused by the occurrence of an event when an object is in a particular state. If an event ter-
minates a state, it will usually have a single transition from that state to another state. If an
event initiates a target state, then consider where it can occur, and add transitions from those
states to the target state. Consider the possibility of using a transition on an enclosing state
rather than adding a transition from each substate to the target state. If an event has different
effects in different states, add a transition for each state.

Once you have specified the transitions, consider the meaning of an event in states for
which there is no transition on the event. Is it ignored? Then everything is fine. Does it rep-
resent an error? Then add a transition to an error state. Does it have some effect that you for-
got? Then add another transition. Sometimes you will discover new states.

It is usually not important to consider effects when building a state diagram for a domain
class. If the objects in the class perform activities on transitions, however, add them to the
state diagram.

ATM example. Figure 12.14 shows the domain state model for the Account class.

12.3.5 Evaluating State Diagrams

Examine each state model. Are all the states connected? Pay particular attention to paths
through it. If it represents a progressive class, is there a path from the initial state to the final
state? Are the expected variations present? If it represents a cyclic class, is the main loop
present? Are there any dead states that terminate the cycle?



204 Chapter 12 / Domain Analysis

Account J
Closed )

close account
withdraw excess funds

open account
Qp—>@mal L ( Overdrawn)

] deposit sufficient funds

suspected fraud release hold
7( Suspended )

Figure 12.14 Domain state model. The domain state model documents important
classes that change state in the real world.

administrative action

repeated incorrect PIN

Use your knowledge of the domain to look for missing paths. Sometimes missing paths
indicate missing states. When a state model is complete, it should accurately represent the
life cycle of the class.

ATM example. Our state model for Account is simplistic but we are satisfied with it.
We would require substantial banking knowledge to construct a deeper model.

12.4 Domain Interaction Model

The interaction model is seldom important for domain analysis. During domain analysis the
emphasis is on key concepts and deep structural relationships and not the users’ view of
them. The interaction model, however, is an important aspect of application modeling and
we will cover it in the next chapter.

12.5 Iterating the Analysis

Most analysis models require more than one pass to complete. Problem statements often
contain circularities, and most applications cannot be approached in a completely linear way,
because different parts of the problem interact. To understand a problem with all its implica-
tions, you must attack the analysis iteratively, preparing a first approximation to the model
and then iterating the analysis as your understanding increases. There is no firm line between
analysis and design, so don’t overdo it. Verify the final analysis with the requestor and appli-
cation domain experts.



12.5 lIterating the Analysis 205

12.5.1 Refining the Analysis Model

The overall analysis model may show inconsistencies and imbalances within and across
models. [terate the different portions to produce a cleaner, more coherent model. Try to refine
classes to increase sharing and improve structure. Add details that you glossed over during
the first pass.

Some constructs will feel awkward and won’t seem to fit in right. Reexamine them care-
fully; you may have the wrong concepts. Sometimes major restructuring in the model is
needed as your understanding increases. It is easier to do now than it will ever be, so don’t
avoid changes just because you already have a model in place. When there are many con-
structs that appear similar but don’t quite fit together, you have probably missed or miscast
a more general concept. Watch out for generalizations factored on the wrong aspects.

A common difficulty is a physical object that has two logically distinct aspects. Each as-
pect should be modeled with a distinct object. An indication of this problem is a class that
doesn’t fit in cleanly and seems to have two sets of unrelated attributes, associations, and op-
erations.

Other indications to watch for include exceptions, many special cases, and lack of ex-
pected symmetry. Consider restructuring your model to capture constraints better within its
structure.

Be wary of codifying arbitrary business practices in your model. Software should facil-
itate operation of the business and not inhibit reasonable changes. Often you can introduce
abstractions that increase business flexibility without substantially complicating a model.

Remove classes or associations that seemed useful at first but now appear extraneous.
Often two classes in the analysis can be combined, because the distinction between them
doesn’t affect the rest of the model in any meaningful way. There is a tendency for models
to grow as analysis proceeds. This is a concern, since the amount of development work es-
calates as a model becomes larger in size. Take a close look at yvour model for minor concepts
to cut or abstractions that can simplify the model.

A good model feels right and does not appear to have extraneous detail. Don’t worry if
it doesn’t seem perfect; even a good model will often have a few small areas where the design
is adequate but never feels quite right.

12.5.2 Restating the Requirements

When the analysis is complete, the model serves as the basis for the requirements and defines
the scope of future discourse. Most of the real requirements will be part of the model. In ad-
dition you may have some performance constraints; these should be stated clearly, together
with optimization criteria. Other requirements specity the method of solution and should be
separated and challenged, if possible.

You should verify the final model with the requestor. During analysis some requirements
may appear to be incorrect or impractical; confirm corrections to the requirements. Also
business experts should verify the analysis model to make sure that it correctly models the
real world. We have found analysis models to be an effective means of communication with
business experts who are not computer experts.



206 Chapter 12 / Domain Analysis

The final verified analysis model serves as the basis for system architecture, design, and
implementation. You should revise the original problem statement to incorporate corrections
and understanding discovered during analysis.

12.5.3 Analysis and Design

The goal of analysis is to specify the problem fully without introducing a bias to any partic-
ular implementation, but it is impossible in practice to avoid all taints of implementation.
There is no absolute line between the various development stages, nor is there any such thing
as a perfect analysis. Don’t treat the rules we have given too rigidly. The purpose of the rules
is to preserve flexibility and permit changes later, but remember that the goal of modeling is
to accomplish the total job, and flexibility is just a means to an end.

ATM example. We have no further changes to the ATM model at this time. A true ap-
plication is more likely to incur revision than a textbook example, because you have review-
ers who are passionate about the application and have a vested interest in it.

12.6 Chapter Summary

The domain model captures general knowledge about an application—concepts and rela-
tionships known to experts in the domain. The domain model has class models and some-
times state models, but seldom has an interaction model. The purpose of analysis is to
understand the problem and the application so that a correct design can be constructed. A
good analysis captures the essential features of the problem without introducing implemen-
tation artifacts that prematurely restrict design decisions.

The domain class model shows the static structure of the real world. First find classes.
Then find associations between classes. Note attributes, though you can defer minor ones.
You can use generalization to organize and simplify the class structure. Group tightly cou-
pled classes and associations into packages. Supplement the class models with a data dictio-
nary—brief textual descriptions, including the purpose and scope of each element.

If a domain class has several qualitatively different states during its life cycle, make a
state diagram for it, but most domain classes will not require state diagrams.

Methodologies are never as linear as they appear in books. This one is no exception. Any
complex analysis is constructed by iteration on multiple levels. You need not prepare all parts
of the model at the same pace. The result of analysis replaces the original problem statement
and serves as the basis for design.

Bibliographic Notes

Abbott explains how to use nouns and verbs in the problem statement to seed thinking about
an application [Abbott-83]. [Coad-95] is a good book with some examples of analysis pat-
terns.



References 207

building the domain class model finding classes

building the domain state model finding events

data dictionary finding states

domain analysis refining a model with inheritance
finding associations shifting the level of abstraction
finding attributes testing the model

Figure 12.15 Key concepts for Chapter 12

References

[Abbott-83] Russell J. Abbott. Program Design by Informal English Descriptions. Communications of
the ACM 26, 11 (November 1983), 882-894.

[Coad-95] Peter Coad, David North, and Mark Mayfield. Object Models: Strategies, Patterns, and Ap-
plications. Upper Saddle River, NJ: Yourdon Press, 1995.

Exercises

12.1 (3) For each of the following systems, identify the relative importance of the three aspects of
modeling: 1) class modeling, 2) state modeling, 3) interaction modeling. Explain your answers.
For example, for a compiler, the answer might be 3, 1, and 2. Interaction modeling is most im-
portant for a compiler because it is dominated by data transformation concerns.

bridge player

change-making machine

car craise control

electronic typewriter

spelling checker

telephone answering machine

-0 oo T

12.2 (7) Create a class diagram for each system from Exercise 11.6. Note that the requirements are
incomplete, so your class models will also be incomplete.

Exercises 12.3-12.8 are related. Do the exercises in sequence. The following are tentative specifica-
tions for a simple diagram editor that could be used as the core of a variety of applications.

The editor will be used interactively to create and modify drawings. A drawing contains several
sheets. Drawings are saved to and loaded from named ASCII files. Sheets contain boxes and links.
Each box may optionally contain a single line of text. Text is allowed only in boxes. The editor must
automatically adjust the size of a box to fit any enclosed text. The font size of the text is not adjustable.
Any pair of boxes on the same sheet may be linked by a series of alternating horizontal and vertical
lines. Figure E12.1 shows a simple, one sheet drawing.

The editor wilt be menu driven, with pop-up menus. A three-button mouse will be used for menu,
object, and link selections. The following are some operations the editor should provide: create sheet,
delete sheet, next sheet, previous sheet, create box, link boxes. enter text, group selection, cut selec-
tions, move selections, copy selections, paste, edit text, save drawing, and load drawing. Copy, cut,



208

Chapter 12 / Domain Analysis

X+Yy

L
=

Figure E12.1 A sample drawing

and paste will work through a buffer. Copy will create a copy of selections from a sheet to the buffer.
Cut will remove selections to the buffer. Paste will copy the contents of the buffer to the sheet. Each
copy and cut operation overwrites the previous contents of the buffer. Pan and zoom will not be al-
lowed; sheets will have fixed size. When boxes are moved, enclosed text should move with them and
links should be stretched.

12.3 (3) The following is a list of candidate classes. Prepare a list of classes that should be eliminated
for any of the reasons given in this chapter. Give a reason for each elimination. If there is more
than one reason, give the main one.

character, line, x coordinate, y coordinate, link, position, length, width, collection, selection,
menu, mouse, button, computer, drawing, drawing file, sheet, pop-up, point, menu item, se-
lected object, selected line, selected box, selected text, file name, box, buffer, line segment
coordinate, connection, text, name, origin, scale factor, corner point, end point, graphics ob-
ject.

12.4 (3) Prepare a data dictionary for proper classes from the previous exercise.

12,5 (3) The following is a list of candidate associations and generalizations for the diagram editor.
Prepare a list of associations and generalizations that should be eliminated or renamed for any
of the reasons given in this chapter. Give a reason for each elimination or renaming. If there is
more than one reason, give the main one.

a box has text, a box has a position, a link logically associates two boxes, a box is moved, a
link has points, a link is defined by a sequence of points, a selection or a buffer or a sheet is
a collection, a character string has a location, a box has a character string, a character string
has characters, a line has length, a collection is composed of links and boxes, a link is delet-
ed, a line is moved, a line is a graphical object, a point is a graphical object, a line has two
points, a point has an x coordinate, a point has a y coordinate

12.6 Figure E12.2 is a partially completed class diagram for the diagram editor. Show how could it
be used for each of the following queries. Use a combination of the OCL (see Chapter 3) and
pseudocode to express your queries.

a.

oo

=

(2) Find all selected boxes and links.

(4) Given a box, determine all other boxes that are directly linked to it.

(8) Given a box, find all other boxes that are directly or indirectly linked to it.

(2) Given a box and a link, determine if the link involves the box.

(3) Given a box and a link, find the other box logically connected to the given box through
the other end of the link.

(4) Given two boxes, determine all links between them.

(6) Given a selection, determine which links are “bridging” links. If a selection does not in-
clude all boxes on a sheet, “bridging” links may result. A “bridging” link is a link that con-



Exercises 209

Text o ; Box @ Collection @—— Link
. " . *

le

[ | |
Selection Buffer Sheet

Figure E12.2 Partially completed class diagram for a diagram editor

nects a box that has been selected to a box that has not. A link that connects two boxes that
are selected or two boxes that are not selected is not a “bridging” link. “Bridging” links re-
quire special handling during a cut or a move operation on a selection.

12.7 (6) Figure E12.3 is a variation of the class diagram in which the class Connection explicitly rep-
resents the connection of a link to a box. Redo the queries from the previous exercise using this

representation.
i 2
* | Connection
! 1
Text o1 n Box " @ Collection 0———*— Link
- 1 1

le

[ [ |
Selection Buffer Sheet

Figure E12.3 Alternative partially completed class diagram for a diagram editor

12.8 (5) What classes require state diagrams? Describe some relevant states and events.

Exercises 12.9—12.13 are related. Do the exercises in sequence. These exercises concern a computer-
ized scoring system that you have volunteered to create for the benefit of a local children’s synchro-
nized swimming league. Teams get together for competitions called meets during which the children
perform in two types of events: figures and routines. Figure events, which are performed individually,
are particular water ballet maneuvers such as swimming on your back with one leg raised straight up.
Routines, which are performed by the entire team, are water ballets. Both figures and routines are
scored, but your system need only address figures.

Each child must provide his or her name, age, address, and team name to register prior to the meet.
To simplify scoring, each contestant is assigned a number.

During a meet, figure events are held simultaneously at several stations that are set up around a
swimming pool, usually one at each corner. There are volunteer judges and scorekeepers. Scorekeep-
ers tend to tire, so there is often turnover in their ranks. Several judges and scorekeepers are assigned
to each station during a meet. Over the course of a season each judge and scorekeeper may serve sev-



210 Chapter 12 / Domain Analysis

eral stations. For scoring consistency, each figure is held at exactly one station with the same judges.
A station may process several figure events in the course of a meet.

Contestants are organized into groups, with each group starting at a different station. When a child
i1s finished at one station, he or she proceeds to another station for another event. When everyone has
been processed at a station for a given event, the station switches to the next event assigned to it.

Each competitor gets one try at each event, called a trial. Just before a trial, the child’s number is
announced to the child and to the scorekeepers. Sometimes the children get out of order or the score-
keepers become confused and the station stops while the problem is fixed. Each judge indicates a raw
score for each observed trial by holding up numbered cards. The raw scores are read to the scorekeep-
ers, who record them and compute a net score for the trial. The highest and lowest raw scores are dis-
carded, and the average of the remaining scores is multiplied by a difficulty factor for the figure.

Individual and team prizes are awarded at the conclusion of a meet based on top individual and
team scores. There are several age categories, with separate prizes for each category. Individual prizes
are based on figures only. Team prizes are based on figures and routines.

Your system will be used to store all information needed for scheduling, registering, and scoring.
At the beginning of a season, all swimmers will be entered into the system and a season schedule will
be prepared, including deciding which figures will be judged at which meets. Prior to a meet, the sys-
tem will be used to process registrations. During a meet, it will record scores and determine winners.

12.9 (3) The following is a list of candidate classes for the scoring system. Prepare a list of classes
that should be eliminated for any of the reasons given in this chapter. Give a reason for each
elimination. If there is more than one reason, give the main one.

address, age, age category, average score, back, card, child, child’s name, competitor, com-
pute average, conclusion, contestant, corner, date, difficulty factor, event, figure, file of team
member data, group, individual, individual prize, judge. league, leg, list of scheduled meets,
meet, net score, number, person, pool, prize, register, registrant, raw score, routine, score,
scorekeeper, season, station, team, team prize, team name, trial, try, water ballet.

12.10 (3) Prepare a data dictionary for proper classes from the previous exercise.

12.11 (4) The following is a list of candidate associations and generalizations for the scoring system.
Prepare a list of associations and generalizations that should be eliminated or renamed for any
of the reasons given in this chapter. Give a reason for each elimination or renaming. If there is
more than one reason, give the main one.

a season consists of several meets, a competitor registers, a competitor is assigned a number,
a number is announced, competitors are split into groups, a meet consists of several events,
several stations are set up at a meet, several events are processed at a station, several judges
are assigned to a station, routines and figures are events, raw scores are read, highest score
is discarded, lowest score is discarded, figures are processed, a league consists of several
teams, a team consists of several competitors, a trial of a figure is made by a competitor, a
trial receives several scores from the judges, prizes are based on scores.

12.12 Figure E12.4 is a partially completed class diagram for the scoring system. The association be-
tween meet and event is not derived. because an event may be determined for a meet before a
station is assigned to it. Show how it could be used for each of the following queries. Use a com-
bination of the OCL (see Chapter 3) and pseudocode to express your queries.

a. (2) Find all the members of a given team.
b. (6) Find which figures were held more than once in a given season.



Exercises 211

Season | Meet ——— Station [——- Scorekeeper
startingDate date location name
endingDate location

0..1 *®
1
* *
Figure *
League figureTitle - Judae
difficultyFactor | 1 # startingTime name
1 description ! *
* *
Team Competitor Trial * .
1 o* Io% :
name name netScore
age
address rawScore
telephoneNumber

Figure E12.4 Partially completed class diagram for a scoring system

(6) Find the net score of a competitor for a given figure at a given meet.

(6) Find the team average over all figures in a given season.

(6) Find the average score of a competitor over all figures in a given meet.

(6) Find the team average in a given figure at a given meet.

(4) Find the set of all individuals who competed in any events in a given season.

(7) Find the set of all individuals who competed in all of the events held in a given season.
i. (6) Find all the judges who judged a given figure in a given season.

j. (6) Find the judge who awarded the lowest score during a given event.

k. (6) Find the judge who awarded the lowest score for a given figure.

1. (7) Modity the diagram so that the competitors registered for an event can be determined.

SEVCERRUR LI S L

12.13 (5) What classes require state diagrams? Describe some relevant states and events.

12.14 (7) Revise the diagrams in Figure E12.5. Figure E12.6, Figure E12.7, and Figure E12.8 to elim-
inate ternary associations. In some cases you will have to promote the association to a class.

Figure E12.5 is a relationship between Doctor, Patient, and DateTime that might be encoun-
tered in a system used by a clinic with several doctors on the staff. The combination of DateTime
+ Patient is unique as well as DateTime + Doctor.

Figure E12.6 is a relationship between Student, Professor, and University that might be used
to express the contacts between students attending and professors teaching at several universi-
ties. There is one link in the relationship for a student that takes one or more classes from a pro-
fessor at a university. The combination of Student + Professor + University is unique.

Figure E12.7 shows the relationship expressing the seating arrangement at a concert.
Concert + Seat is unique.

Figure E12.8 expresses the connectivity of a directed graph. Each edge of a directed graph
is connected in a specific order to exactly two vertices. More than one edge can be connected
between a given pair of vertices. The attribute Edge is unique for the relationship.

In each case, try to come as close as possible to the original intent and compare the merits of
the original and the revised models.



212 Chapter 12 / Domain Analysis

* *

Doctor Y DateTime
*

Patient

Figure E12.5 Ternary association for Doctor, Patient, and DateTime

Student \I/ University
*

Professor

Figure E12.6 Ternary association for Student, Professor, and University

Seat \|/ Concert
%

Person

Figure E12.7 Ternary association for Seat, Person, and Concert

*—I toVertex

Edge Vertex

* | fromVertex

Figure E12.8 Ternary association for directed graphs

12.15 (9) Figure E12.9 lists requirements for a document manager. We then prepared the initial model
in Figure E12.10. Note some flaws in the model.

Develop software for managing professional records of papers, books, journals, notes, and
computer files. The system must be able to record authors of published works in the appro-
priate order, name of work, date of publication, publisher, publisher city, an abstract, as well
as a comment. The software must be able to group published works into various categories
that are defined by the user to facilitate searching. The user must be able to assign a quality
indicator of the perceived value of each work.

Only some of the papers in each issue of a journal may be of interest. It would also be
helpful to be able to attach comments to sections or even individual pages of a work.

Figure E12.9 Requirements for a document manager



Exercises 213

Publisher
publisherName 0.1 %
publisherCity - 1 0.1 :
Author |* {ordered} %| name comment
date
name abstract pageNumber
% % qualityScore 1
DocumentCategory comment 0.1
categoryName Page
comment
I 1 l I 1
Paper & Journal Book Note File [w=—% FilePath
journalVolume pathName
journalNumber

Figure E12.10 Initial model for a document manager

B There is little difference between subclasses. Is an outline of a paper a “paper” or a “note”?
How should we handle a paper that is in both an electronic file and a binder? How should
we represent information about slides for talks?

B We would like to handle both standard comments (applicable to many documents and cho-
sen by point and click in a user interface) and custom comments (applicable to one document
and specifically typed by the user).

B We should be able to comment on a numbered page without having sections.

Improve the model by making it more abstract. (Hint: You should have generic classes for lo-
cation, document properties, and comments. It is adequate to represent document composition
with a hierarchy.)

Exercises 12.16-12.19 are related. Do the exercises in sequence. The following are tentative specifi-
cations for scheduling software.

The scheduling software must support the following functions: arranges meetings, schedules ap-
pointments, plans tasks, and tracks holidays (including vacations).

The scheduler runs on a network that many users share. Each user may have a schedule. A schedule
contains multiple entries. Most entries belong to a single schedule: however, a meeting entry may ap-
pear in many schedules.

There are four kinds of entries: meetings, appointments, tasks, and holidays. Meetings and ap-
pointments both occur within a single day and have a start time and end time. In contrast, tasks and
holidays may extend over several days and just have a start date and end date. Any entry may be
repeated. Repeat information includes how often the entry should be repeated, when it starts, and
when it ends.

12.16 (3) The following is a list of candidate classes. Prepare a list of classes that should be eliminated
for any of the reasons given in this chapter. Give a reason for each elimination. If there is more
than one reason, give the main one.



214 Chapter 12 / Domain Analysis

scheduling software, function, meeting, appointment, task, holiday, vacation, scheduler, net-
work, user, schedule, entry, meeting entry. day, start time, end time. start date, end date, re-
peat information.

12.17 (3) Prepare a data dictionary for proper classes from the previous exercise.

12.18 (4) The following is a list of candidate associations and generalizations for the scoring system.
Prepare a list of associations and generalizations that should be eliminated or renamed for any
of the reasons given in this chapter. Give a reason for each elimination or renaming. If there is
more than one reason, give the main one.

scheduling software that supports the following functions
the scheduler runs on a network that many users share
user may have a schedule

a schedule contains multiple entries

entries pertain to a single schedule

a meeting entry may appear in many schedules

meetings and appointments both occur within a single day and have a start time and end time
M tasks and holidays may extend over several days and just have a start date and end date.

12.19 (5) Construct a class model for the scheduling software.

Exercises 12.20-12.23 are related. Do the exercises in sequence. The following provides requirements
for meetings and extends the scheduling software from Exercises 12.16-12.19.

The scheduling software facilitates meetings. When a user (the chairperson) arranges a meeting,
the software places a meeting entry in the schedule of each attendee. The chairperson uses the sched-
uler to reserve a room for the meeting, to identity the attendees, and to find time on their schedules
when everyone is available. The chairperson can indicate whether the attendance for each attendee is
required or optional. The systein tracks the acceptance status for each attendee—whether an attendee
has accepted or declined.

The scheduler manages meeting notices. When a meeting is set up, the scheduler sends invitations
to all attendees, who are able to view meeting information. Each invitee can accept or refuse as well
as possibly cancel later on. The system also manages notices in case the meeting is rescheduled or can-
celled.

12.20 (3) The following is a list of candidate classes. Prepare a list of classes that should be eliminated
for any of the reasons given in this chapter. Give a reason for each elimination. If there is more
than one reason, give the main one.

scheduling software, meeting, user, chairperson, software, meeting entry, schedule, attend-
ee, scheduler, room, time, everyone, attendance, acceptance status, meeting notice, invita-
tion, meeting information, invitee, notice.

12.21 (3) Prepare a data dictionary for proper classes from the previous exercise.

12.22 (4) The following is a list of candidate associations and generalizations. Prepare a list of asso-
ciations and generalizations that should be eliminated or renamed for any of the reasons given
in this chapter. Give a reason for each elimination or renaming. If there is more than one reason,
give the main one.

B scheduling software facilitates meetings



Exercises 215

12.23

B user (the chairperson) arranges a meeting

software places a meeting entry in the schedule of cach attendee

B chairperson uses the scheduler to reserve a room for the meeting, to identify the attendees,
and to find time on their schedules when everyone is available

B chairperson can indicate whether the attendance for each attendee is required or optional

M system tracks the acceptance status for each attendee—whether an attendee has accepted or
declined

B scheduler manages meeting notices

B scheduler sends invitations to all attendees, who are able to view meeting information

W system also manages notices in case the meeting is rescheduled or cancelled.

(7) Construct a class model for the extension to the scheduling software. Your answer should
resolve a problem from Exercise 12.19. In the class model for our answer to Exercise 12.19, we
cannot tell which user owns an entry. (Hint: You should reconcile the chairperson and attendee
associations from the extended requirements with the association between Schedule and Entry
from the Exercise 12.16-12.19 requirements.)



13
Application Analysis

This chapter completes our treatment of analysis by adding major application artifacts to the
domain model from the prior chapter. We include these application artifacts in analysis. be-
cause they are important, visible to users, and must be approved by them. In general, you
cannot find the application classes in the domain itself, but must find them in use cases.

13.1 Application Interaction Model

Most domain models are static and operations are unimportant, because a domain as a whole
usually doesn’t do anything. The focus of domain modeling is on building a model of intrin-
sic concepts. After completing the domain model we then shift our attention to the details of
an application and consider interaction.

Begin interaction modeling by determining the overall boundary of the system. Then
identify use cases and flesh them out with scenarios and sequence diagrams. You should also
prepare activity diagrams for use cases that are complex or have subtleties. Once you fully
understand the use cases. you can organize them with relationships. And finally check
against the domain class model to ensure that there are no inconsistencies.

You can construct an application interaction model with the following steps.

Determine the system boundary. [13.1.1]

Find actors. [13.1.2]

Find use cases. [13.1.3]

Find initial and final events. [13.1.4]

Prepare normal scenarios. [13.1.5)

Add variation and exception scenarios. [13.1.6]

Find external events. [13.1.7]

Prepare activity diagrams for complex use cases. |13.1.8]

216



13.1  Application Interaction Model 217

B Organize actors and use cases. [13.1.9]
B Check against the domain class model. [13.1.10]

13.1.1 Determining the System Boundary

You must know the precise scope of an application—the boundary of the system—in order
to specify functionality. This means that you must decide what the system includes and, more
importantly, what it omits. If the system boundary is drawn correctly, you can treat the sys-
tem as a black box in its interactions with the outside world—you can regard the system as
a single object, whose internal details are hidden and changeable. During analysis, you de-
termine the purpose of the system and the view that it presents to its actors. During design,
you can change the internal implementation of the system as long as you maintain the exter-
nal behavior.

Usually, you should not consider humans as part of a system, unless you are modeling
a human organization, such as a business or a government department. Humans are actors
that must interact with the system, but their actions are not under the control of the system.
However, you must allow for human error in your system.

ATM example. The original problem statement from Chapter 11 says to “design the
software to support a computerized banking network including both human cashiers and au-
tomatic teller machines...” Now it is important that cashier transactions and ATM transac-
tions be seamless—from the customer’s perspective either method of conducting business
should yield the same effect on a bank account. However, in commercial practice an ATM
application would be separate from a cashier application—an ATM application spans banks
while a cashier application is internal to a bank. Both applications would share the same un-
derlying domain model, but each would have its own distinct application model. For this
chapter we focus on ATM behavior and ignore cashier details.

13.1.2 Finding Actors

Once you determine the system boundary, you must identify the external objects that interact
directly with the system. These are its actors. Actors include humans, external devices, and
other software systems. The important thing about actors is that they are not under control
of the application, and you must consider them to be somewhat unpredictable. That is, even
though there may be an expected sequence of behavior by the actors, an application’s design
should be robust so that it does not crash it an actor fails to behave as expected.

In finding actors, we are not searching for individuals but for archetypical behavior.
Each actor represents an idealized user that exercises some subset of the system functional-
ity. Examine each external object to see if it has several distinct faces. An actor is a coherent
face presented to the system, and an external object may have more than one actor. It is also
possible for different kinds of external objects to play the part of the same actor.

ATM example. A particular person may be both a bank teller and a customer of the
same bank. This is an interesting but usually unimportant coincidence—a person approaches
the bank in one or the other role at a time. For the ATM application, the actors are Customer,
Bank, and Consortium.



218 Chapter 13 / Application Analysis

13.1.3 Finding Use Cases

For each actor, list the fundamentally different ways in which the actor uses the system. Each
of these ways is a use case. The use cases partition the functionality of a system into a small
number of discrete units, and all system behavior must fail under some use case. You may
have trouble deciding where to place some piece of marginal behavior. Keep in mind that
there are always borderline cases when making partitions; just make a decision even if it is
somewhat arbitrary.

Each use case should represent a kind of service that the system provides—something
that provides value to the actor. Try to keep all of the use cases at a similar level of detail.
For example, if one use case in a bank is “apply for loan,” then another use case should not
be “withdraw cash from savings account using ATM.” The latter description is much more
detailed than the former; a better match would be “make withdrawal.” Try to focus on the
main goal of the use case and defer implementation choices.

At this point you can draw a preliminary use case diagram. Show the actors and the use
cases, and connect actors to use cases. Usually you can associate a use case with the actor
that initiates it, but other actors may be involved as well. Don’t worry if you overlook some
participating actors. They will become apparent when you elaborate the use cases. You
should also write a one or two sentence summary for each use case.

ATM example. Figure 13.1 shows the use cases, and the bullets summarize them.

ATM

initiate
session
A
/ query
account
//4
process
transaction

transmit
data

— X

Bank

F

——

g
Customer

/ Consortium

Figure 13.1 Use case diagram for the ATM. Use cases partition the functionality of
a system into a small number of discrete units that cover its behavior.

B Initiate session. The ATM establishes the identity of the user and makes available a list
of accounts and actions.

B Query account. The system provides general data for an account, such as the current
balance, date of last transaction, and date of mailing for last statement.



13.1 Application Interaction Model 219

B Process transaction. The ATM system performs an action that affects an account’s bal-
ance, such as deposit, withdraw, and transfer. The ATM ensures that all completed
transactions are ultimately written to the bank’s database.

B Transmit data. The ATM uses the consortium’s facilities to communicate with the ap-
propriate bank computers.

13.1.4 Finding Initial and Final Events

Use cases partition system functionality into discrete pieces and show the actors that are in-
volved with each piece, but they do not show the behavior clearly. To understand behavior,
you must understand the execution sequences that cover each use case. You can start by find-
ing the events that initiate each use case. Determine which actor initiates the use case and
define the event that it sends to the system. In many cases, the initial event is a request for
the service that the use case provides. In other cases, the initial event is an occurrence that
triggers a chain of activity. Give this event a meaningful name, but don’t try to determine its
exact parameter list at this point.

You should also determine the final event or events and how much to include in each use
case. For example, the use case of applying for a loan could continue until the application is
submitted, until the loan is granted or rejected, until the money from the loan is delivered, or
until the loan is finally paid off and closed. All of these could be reasonable choices. The
modeler must define the scope of the use case by defining when it terminates.

ATM example. Here are initial and final events for each use case.

B Initiate session. The initial event is the customer’s insertion of a cash card. There are
two final events: the system keeps the cash card or the system returns the cash card.

B Query account. The initial event is a customer’s request for account data. The final
event is the system’s delivery of account data to the customer.

M Process transaction. The initial event is the customer’s initiation of a transaction.
There are two final events: committing or aborting the transaction.

B Transmit data. The initial event could be triggered by a customer’s request for account
data. Another possible initial event could be recovery from a network, power, or another
kind of failure. The final event is successful transmission of data.

13.1.5 Preparing Normal Scenarios

For each use case, prepare one or more typical dialogs to get a feel for expected system be-
havior. These scenarios illustrate the major interactions, external display formats, and infor-
mation exchanges. A scenario is a sequence of events among a set of interacting objects.
Think in terms of sample interactions, rather than trying to write down the general case di-
rectly. This will help you ensure that important steps are not overlooked and that the overall
flow of interaction is smooth and correct.

For most problems, logical correctness depends on the sequences of interactions and not
their exact times. (Real-time systems, however, do have specific timing requirements on in-
teractions, but we do not address real-time systems in this book.)



220 Chapter 13 / Application Analysis

Sometimes the problem statement describes the full interaction sequence, but most of
the time you will have to invent (or at least fiesh out) the interaction sequence. For example,
the ATM problem statement indicates the need to obtain transaction data from the user but is
vague about exactly what parameters are needed and in what order to ask for them. During
analysis, try to avoid such details. For many applications. the order of gathering input is not
crucial and can be deferred to design.

Prepare scenarios for “normal’” cases—interactions without any unusual inputs or error
conditions. An event occurs whenever information is exchanged between an object in the
system and an outside agent, such as a user, a sensor, or another task. The information values
exchanged are event parameters. For example, the event password entered has the password
value as a parameter. Events with no parameters are meaningful and even common. The in-
formation in such an event is the fact that it has occurred. For each event, identify the actor
(system, user, or other external agent) that caused the event and the parameters of the event.

ATM example. Figure 13.2 shows a normal scenario for each use case.

13.1.6 Adding Variation and Exception Scenarios
After you have prepared typical scenarios, consider “special” cases, such as omitted input,
maximum and minimum values, and repeated values. Then consider error cases, including
invalid values and failures to respond. For many interactive applications, error handling is
the most difficult part of development. If possible, allow the user to abort an operation or roll
back to a well-defined starting point at each step. Finally consider various other kinds of in-
teractions that can be overlaid on basic interactions, such as help requests and status queries.
ATM example. Some variations and exceptions follow. We could prepare scenarios for
each of these but will not go through the details here. (See the exercises.)

The ATM can’t read the card.

The card has expired.

The ATM times out waiting for a response.
The amount is invalid.

The machine is out of cash or paper.

The communication lines are down.

The transaction is rejected because of suspicious patterns of card usage.

There are additional scenarios for administrative parts of the ATM system, such as authoriz-
ing new cards, adding banks to the consortium, and obtaining transaction logs. We will not
explore these aspects.

13.1.7 Finding External Events

Examine the scenarios to find all external events—include all inputs, decisions, interrupts,
and interactions to or from users or external devices. An event can trigger effects for a target
object. Internal computation steps are not events, except for computations that interact with



13.1 Application Interaction Model 221

The ATM asks the user to insert a card.

The user inserts a cash card.

The ATM accepts the card and reads its serial number.

The ATM requests the password.

The user enters “1234.”

Initiate The ATM verifies the password by contacting the consortium and bank.
session The ATM displays a menu of accounts and commands.

The user chooses the command to terminate the session.

The ATM prints a receipt, ejects the card, and asks the user to take them.
The user takes the receipt and the card.

The ATM asks the user to insert a card

The ATM displays a menu of accounts and commands.

The user chooses to query an account.

Query The ATM contacts the consortium and bank which return the data.
account The ATM displays account data for the user.

The ATM displays a menu of accounts and commands.

The ATM displays a menu of accounts and commands.

The user selects an account withdrawal.

The ATM asks for the amount of cash.

The user enters $100.

Process The ATM verifies that the withdrawal satisfies its policy limits.

transaction | The ATM contacts the consortium and bank and verifies that the account
has sufficient funds.

The ATM dispenses the cash and asks the user to take it.

The user takes the cash.

The ATM displays a menu of accounts and commands.

The ATM requests account data from the consortium.

. The consortium accepts the request and forwards it to the appropriate bank.
Transmit The bank receives the request and retrieves the desired data.

data The bank sends the data to the consortium.

The consortium routes the data to the ATM.

Figure 13.2 Normal ATM scenarios. Prepare one or more scenarios for each use case.

the external world. Use scenarios to find normal events, but don’t forget unusual events and
error conditions.

A transmittal of information to an object is an event. For example, enter password is a
message sent from external agent User to application object ATM. Some information flows
are implicit. Many events have parameters.

Group together under a single name events that have the same effect on flow of control,
even if their parameter values differ. For example, enter password should be an event, whose
parameter is the password value. The choice of password value does not affect the flow of



222 Chapter 13 / Application Analysis

control; therefore events with different password values are all instances of the same kind of
event. Similarly, dispense cash is also an event, since the amount of cash dispensed does not
affect the flow of control. Event instances whose values affect the flow of control should be
distinguished as different kinds of events. Account OK, bad account, and bad password are
all different events; don’t group them under card status.

You must decide when differences in quantitative values are important enough to distin-
guish as distinct events. For example, the different digits from a keyboard would usually be
considered the same event, since the high-level control does not depend on numerical values.
Pushing the “enter” key, however, might be considered a distinct event, since an application
could treat it differently. The distinction among events depends on the application.

Prepare a sequence diagram for each scenario. A sequence diagram shows the partici-
pants in an interaction and the sequence of messages among them; each participant is as-
signed a column in a table. The sequence diagram clearly shows the sender and receiver of
each event. If more than one object of the same class participates in the scenario, assign a
separate column to each object. By scanning a particular column in the diagram, you can see
the events that directly affect a particular object. From the sequence diagrams you can then
summarize the events that each class sends and rcceives.

ATM example. Figure 13.3 shows a sequence diagram for the process transaction sce-
nario. Figure 13.4 summarizes events with the arrows indicating the sender and receiver. For
brevity, we do not show event parameters in Figure 13.4.

:User :ATM :Consortium :Bank

display menu

select withdrawal

select account

request amount

enter amount

verify funds

verify funds

confirm funds

confirm funds

dispense cash

take cash

Figure 13.3 Sequence diagram for the process transaction scenario. A sequence
diagram clearly shows the sender and receiver of each event.



13.1  Application Interaction Model 223

insert card, enter password, select account. select deposit
select withdrawal. transfer {funds, query account
enter amount, take cash, take card
cancel, terminate. continue

—>
User , _ < ATM
display main screen
unreadable card message. canceled message
request password, request amount
eject card. failure message
dispense cash, request take cash
request continuation
print receipt, request take card

transaction succeeded
transaction failed
process transaction account OK

verify account \l/ 1\ bad account

bad account message verify funds bad password
bad bank code message bad bank code
display transaction menu confirm funds

verify card with bank. verity funds
process bank transaction
Bank 2 C i

an onsortium

bank transaction succeeded. confirm funds
bank transaction failed, bank account OK
bad bank account, bad bank password

Figure 13.4 Events for the ATM case study. Tally the events in the sce-
narios and note the classes that send and receive each event.

13.1.8 Preparing Activity Diagrams for Complex Use Cases

Sequence diagrams capture the dialog and interplay between actors, but they do not clearly
show alternatives and decisions. For example, you need one sequence diagram for the main
flow of interaction and additional sequence diagrams for each error and decision point. Ac-
tivity diagrams let you consolidate all this behavior by documenting forks and merges in the
control flow. It is certainly appropriate to use activity diagrams to document business logic
during analysis, but do not use them as an excuse to begin implementation.

ATM example. As Figure 13.5 shows, when the user inserts a card, there are many pos-
sible responses. Some responses indicate a possible problem with the card or account; hence
the ATM retains the card. Only the successful completion of the tests allows ATM processing
to proceed.

13.1.9 Organizing Actors and Use Cases
The next step is to organize use cases with relationships (include, extend, and generaliza-
tion—see Chapter 8). This is especially helptul for large and complex systems. As with the
class and state models. we defer organization until the base use cases are in place. Otherwise,
there is too much of a risk of distorting the structure to match preconceived notions.
Similarly, you can also organize actors with generalization. For example, an Adminis-
rrator might be an Operator with additional privileges.
ATM example. Figure 13.6 organizes the use cases with the include relationship.



224 Chapter 13 / Application Analysis

©®

return card ( insert card =
_ [unreadable]
[readable}
[communications down] [bad bank code or bad account]
[card OK]
[communications down] . [account fraud alert]

[good account]

[communications down] Yol —
@quest password )

[communications down] _[multiple password failures]

o keep card

Figure 13.5 Activity diagram for card verification. You can use activity
diagrams to document business logic, but do not use them as
an excuse to begin premature implementation.

{correct password]

13.1.10 Checking Against the Domain Class Model

At this point, the application and domain models should be mostly consistent. The actors,
use cases, and scenarios are all based on classes and concepts from the domain model. Recall
that one of the steps in constructing the domain class model is to test access paths. In reality,
such testing is a first attempt at use cases.

Cross check the application and domain models to ensure that there are no inconsisten-
cies. Examine the scenarios and make sure that the domain model has all the necessary data.
Also make sure that the domain model covers all event parameters.

13.2 Application Class Model

Application classes define the application itself, rather than the real-world objects that the ap-
plication acts on. Most application classes are computer-oriented and define the way that users
perceive the application. You can construct an application class model with the following steps.



13.2 Application Class Model 225

Consortium Customer Bank

ATM T

<initiate session
e \r N

. i N
«include» N

! N\

@ocess tl'aﬂsaCtiorD } «include»
/

— -
b i | /
N «include»

AN / ’

«include»
/

query account

\< transmit data
x_—/

Figure 13.6 Organizing use cases. Once the basic use cases are identified,
you can organize them with relationships.

Specify user interfaces. [13.2.1]
Define boundary classes. [13.2.2]

Determine controllers. [13.2.3]

Check against the interaction model. [13.2.4]

13.2.1 Specifying User Interfaces

Most interactions can be separated into two parts: application logic and the user interface. A
user interface is an object or group of objects that provides the user of a system with a co-
herent way to access its domain objects, commands, and application options. During analysis
the empbhasis is on the information flow and control, rather than the presentation format. The
same program logic can accept input from command lines, files. mouse buttons, touch pan-
els, physical push buttons, or remote links. if the surface details are carefully isolated.

During analysis treat the user interface at a coarse level of detail. Don’t worry about how
to input individual pieces of data. Instead, try to determine the commands that the user can
perform—a command is a large-scale request for a service. For example, “make a flight res-
ervation” and “find matches for a phrase in a database” would be commands. The format of
inputting the information for the commands and invoking them is relatively easy to change,
so work on defining the commands first.

Nevertheless, it is acceptable to sketch out a sample interface to help you visualize the
operation of an application and see if anything important has been forgotten. You may also



226 Chapter 13/ Application Analysis

want to mock up the interface so that users can try it. Dummy procedures can simulate ap-
plication logic. Decoupling application logic from the user interface lets you evaluate the
“look and feel” of the user interface while the application is under development.

ATM example. Figure 13.7 shows a possible ATM layout. Its exact details are not im-
portant at this point. The important thing is the information exchanged.

Messages to user
1 2 3 CLEAR
4 5 6 CANCEL
7 8 9 ENTER
0
[ ] [ |
receipts cash slot

Figure 13.7 Format of ATM interface. Sometimes a sample interface
can help you visualize the operation of an application.

13.2.2 Defining Boundary Classes
A system must be able to operate with and accept information from external sources, but it
should not have its internal structure dictated by them. It is often helpful to define boundary
classes to isolate the inside of a system trom the external world. A boundary class is a class
that provides a staging area for communications between a system and an external source. A
boundary class understands the format of one or more external sources and converts infor-
mation for transmission to and from the internal system.

ATM example. It would be helpful to define boundary classes (CashCardBoundarv,
AccountBoundary) to encapsulate the communication between the ATM and the consortium.
This interface will increase flexibility and make it easier to support additional consortiums.

13.2.3 Determining Controllers

A controller is an active object that manages control within an application. It receives signals
from the outside world or from objects within the system, reacts to them, invokes operations



13.3 Application State Model 227

on the objects in the system, and sends signals to the outside world. A controller is a piece
of reified behavior captured in the form of an object—behavior that can be manipulated and
transformed more easily than plain code. At the heart of most applications are one or more
controllers that sequence the behavior of the application.

Most of the work in designing a controller is in modeling its state diagram. In the appli-
cation class model, however, you should capture the existence of the controllers in a system,
the control information that each one maintains, and the associations from the controllers to
other objects in the system.

ATM example. It is apparent from the scenarios in Figure 13.2 that the ATM has two
major control loops. The outer loop verifies customers and accounts. The inner loop services
transactions. Each of these loops could most naturally be handled with a controller.

13.2.4 Checking Against the Interaction Model

As you build the application class model, go over the use cases and think about how they
would work. For example, if a user sends a command to the application, the parameters of
the command must come from some user-interface object. The requesting of the command
itself must come from some controller object. When the domain and application class models
are in place, you should be able to simulate a use case with the classes. Think in terms of
navigation of the models, as we discussed in Chapter 3. This manual simulation helps to es-
tablish that all the pieces are in place.

ATM example. Figure 13.8 shows a preliminary application class model and the do-
main classes with which it interacts. There are two interfaces-—one for users and the other
for communicating with the consortium. The application model just has stubs for these class-
es, because it is not clear how to elaborate them at this time.

Note that the boundary classes “flatten™ the data structure and combine information
from multiple domain classes. For simplicity, it is desirable to minimize the number of
boundary classes and their relationships.

The TransactionController handles both queries on accounts and the processing of
transactions. The SessionController manages ATMsessions, cach of which services a cus-
tomer. Each ATMsession may or may not have a valid CashCard and Account. The Session-
Controller has a status of ready. impaired (such as out of paper or cash but still able to
operate for some functions). or down (such as a communications failure). There is a log of
ControllerProblems and the specific problem type (bad card reader, out of paper. out of cash,
communication lines down, etc.).

13.3 Application State Model

The application state model focuses on application classes and augments the domain state
model. Application classes are more likely to have important temporal behavior than domain
classes.

First identify application classes with multiple states and use the interaction model to
find events for these classes. Then organize permissible event sequences for each class with



228 Chapter 13 / Application Analysis

Userinterface Consortiuminterface

CashCardBoundary * * AccountBoundary

bankCode bankCode

cardCode accountCode ProblemType

serialNumber balance

password creditLimit name

limit accountType |

bankName bankName
customerName #*
customerAddress ControllerProblem

. ' startDateTime

Remote |activeTransaction TransactionController stopDateTime

Transaction | * 0.1 - ;
startDateTime *

I ]
activeCard
CashCard \*= 0.1] ATMsession SessionController
X *
0.1 0.1 startDateTime ! status
Account [activeAccount

Figure 13.8 ATM application class model. Application classes augment the domain
classes and are necessary for development.

a state diagram. Next, check the various state diagrams to make sure that common events
match. And finally check the state diagrams against the class and interaction models to en-
sure consistency.

You can construct an application state model with the following steps.

Determine application classes with states. [13.3.1]
Find events. [13.3.2]

Build state diagrams. [13.3.3]

Check against other state diagrams. [13.3.4]
Check against the class model. [13.3.5]

Check against the interaction model. [13.3.6]

13.3.1 Determining Application Classes with States

The application class model adds computer-oriented classes that are prominent to users and
important to the operation of an application. Consider each application class and determine
which ones have multiple states. User interface classes and controller classes are good can-
didates for state models. In contrast, boundary classes tend to be static and used for staging
data import and export—consequently they are less likely to involve a state model.

ATM example. The user interface classes do not seem to have any substance. This is
probably because our understanding of the user interface is incomplete at this point in devel-



13.3 Application State Model 229

opment. The boundary classes also lack state behavior. However. the controllers do have im-
portant states that we will elaborate.

13.3.2 Finding Events

For the application interaction model, you prepared a number of scenarios. Now study those
scenarios and extract events. Even though the scenarios may not cover every contingency, they
ensure that you do not overlook common interactions and they highlight the major events.

Note the contrast between the domain and application processes for state models. With
the domain model, first we find states and then we find events. That is because the domain
model focuses on data—significant groupings of data form states that are subject to events.
With the application model, in contrast, first we find events and then we determine states.
The application model’s early attention to events is a consequence of the emphasis on behav-
ior— use cases are elaborated with scenarios that reveal events.

ATM example. We revisit the scenarios from the application interaction model. Some
events are: insert card, enter password, end session, and take card.

13.3.3 Building State Diagrams

The next step is to build a state diagram for each application class with temporal behavior.
Choose one of these classes and consider a sequence diagram. Arrange the events involving
the class into a path whose arcs are labeled by the events. The interval between any two
events is a state. Give each state a name, if a name is meaningful. but don’t bother if it is not.
Now merge other sequence diagrams into the state diagram. The initial state diagram will be
a sequence of events and states. Every scenario or sequence diagram corresponds to a path
through the state diagram.

Now find loops within the diagram. If a sequence of events can be repeated indefinitely,
then they form a loop. In a loop, the first state and the last state are identical. If the object
“remembers” that it has traversed a loop, then the two states are not really identical, and a
simple loop is incorrect. At least one state in a loop must have multiple transactions leaving
it or the loop will never terminate.

Once you have found the loops, merge other sequence diagrams into the state diagram.
Find the point in each sequence diagram where it diverges from previous ones. This point
corresponds to an existing state in the diagram. Attach the new event sequence to the existing
state as an alternative path. While examining sequence diagrams, you may think of other pos-
sible events that can occur at each state; add them to the state diagram as well.

The hardest thing is deciding at which state an alternate path rejoins the existing dia-
gram. Two paths join at a state if the object “forgets” which one was taken. In many cases,
it is obvious from knowledge of the application that two states are identical. For example,
inserting two nickels into a vending machine is equivalent to inserting one dime.

Beware of two paths that appear identical but can be distinguished under some circum-
stances. For example, some systems repeat the input sequence if the user makes an error en-
tering information but give up after a certain number of failures. The repeat sequence is
almost the same except that it remembers the past failures. The difference can be glossed



230 Chapter 13/ Application Analysis

over by adding a parameter, such as number of failures, to remember information. At least
one transition must depend on the parameter.

The judicious use of parameters and conditional transitions can simplify state diagrams
considerably but at the cost of mixing together state information and data. State diagrams
with too much data dependency can be confusing and counterintuitive. Another alternative
is to partition a state diagram into two concurrent subdiagrams, using one subdiagram for the
main line and the other for the distinguishing information. For example, a subdiagram to al-
low for one user failure might have states No error and One error.

After normal events have been considered, add variation and exception cases. Consider
events that occur at awkward times—for example, a request to cancel a transaction after it
has been submitted for processing. In cases when the user (or other external agent) may fail
to respond promptly and some resource must be reclaimed, a time-out event can be generated
after a given interval. Handling user errors cleanly often requires more thought and code than
the normal case. Error handling often complicates an otherwise clean and compact program
structure, but it must be done.

You are finished with the state diagram of a class when the diagram covers all scenarios
and the diagram handles all events that can affect a state. You can use the state diagram to
suggest new scenarios by considering how some event not already handled should affect a
state. Posing “what if”” questions is a good way to test for completeness and error-handling
capabilities.

If there are complex interactions with independent inputs, you can use a nested state di-
agram, as Chapter 6 describes. Otherwise a flat state diagram suffices. Repeat the above pro-
cess of building state diagrams for each class that has time-dependent behavior.

ATM example. Figure 13.9 shows the state diagram for the SessionController. The
middle of the diagram has the main behavior of processing the card and password. A com-
munications failure can interrupt processing at any time. The ATM returns the card upon a
communications failure, but keeps it if there are any suspicious circumstances. After finish-
ing transactions, receipt printing occurs in parallel to card ejection, and the user can take the
receipt and card in any order.

Figure 13.10 and Figure 13.11 show the state diagram for the TransactionController that
is spawned by the SessionController. (See the exercises for the other subdiagrams of Figure
13.10.) We have separated the TransactionController and the SessionController because
their purposes are much different—the SessionController focuses on verifying users, while
the TransactionController services account inquiries and balance changes.

13.3.4 Checking Against Other State Diagrams

Check the state diagrams of each class for completeness and consistency. Every event should
have a sender and a receiver. occasionally the same object. States without predecessors or
successors are suspicious: make sure they represent starting or termination points of the in-
teraction sequence. Follow the effects of an input event from object to object through the sys-
tem to make sure that they match the scenarios. Ohjects are inherently concurrent: beware of
synchronization errors where an input occurs at an awkward time. Make sure that corre-
sponding events on different state diagrams are consistent.



13.3 Application State Model 231

SessionController )

Disabled éMen Taking card Ejecting card
sane do /request take card do /eject card

comm up comm down [no card]

: N

comm down [has card]

Main screen \)
. do /display main screen /
: - insert card
insert card [no problem] [problem]
/ count:=0
Getting password Problem card " / keep card
do /request password do / error message
~ .
enter password | | bad password
[count<n] / count++ bad password
. [count>=n]
Verifying accounﬁ
do / verify account /
account OK

\ / new TransactionControIIelj

(Servicing transactions>

transactions finished OR comm down

Emitting ]

Ejecting card Taking card card taken
do / eject card do /request take card

Printing receipt Taking receipt receipt taken
do / print receipt do /request take receipt

Figure 13.9 State diagram for SessionController. Build a state diagram
for each application class with temporal behavior.




232 Chapter 13 / Application Analysis

TransactionController j

® =~ comm down
(o |
/ finished - cancel \
@<———( Main screen \)ei
do / display commands T
/ clear receipt log continue
withdrawal deposit  transfer query
( w:Withdrawal < d:Deposit) Transfer ) {  q:Query

N /

Figure 13.10 State diagram for TransactionController. Obtain informa-
tion from the scenarios of the interaction model.

Transfer J
Getting amount
do /query amount
b 7

enter amount(amount)

Getting source account
do /query source account)

enter account (source)

< Getting target account
Bad transfer do /query target accoun Good transfer
do /complain do / display confirm
enter account (target)

/ Perform transfer\

not OK \go /perform transfty OK/ add to receipt log

Figure 13.11 State diagram for Transfer. This diagram elaborates the
Transfer state in Figure 13.10.



13.4 Adding Operations 233

ATM example. The SessionController initiates the TransactionController, and the ter-
mination of the TransactionController causes the SessionController to resume.

13.3.5 Checking Against the Class Model

Similarly, make sure that the state diagrams are consistent with the domain and application
class models.

ATM example. Multiple ATMs can potentially concurrently access an account. Ac-
count access needs to be controlled to ensure that only one update at a time is applied. We
will not resolve the details here.

13.3.6 Checking Against the Interaction Model

When the state model is ready, go back and check it against the scenarios of the interaction
model. Simulate each behavior sequence by hand and verify that the state diagram gives the
correct behavior. If an error is discovered, change either the state diagram or the scenarios.
Sometimes a state diagram will uncover irregularities in the scenarios. so don’t assume that
the scenarios are always correct.

Then take the state model and trace out legitimate paths. These represent additional sce-
narios. Ask yourself whether they make sense. It not, then modily the state diagram. Often,
however, you will discover useful behavior that you had not considered before. The mark of
a good design is the discovery of unexpected information that follows from the design, prop-
erties that appear meaningful (and often seem obvious) once they are observed.

ATM example. As best as we can tell right now. the state diagrams are sound and con-
sistent with the scenarios.

13.4 Adding Operations

Our style of object-oriented analysis places much less emphasis on defining operations than
the traditional programming-based methodologies. We de-emphasize operations because the
list of potentially useful operations is open-ended and it is difficult to know when to stop add-
ing them. Operations arise from the following sources, and you should add major operations
now. Chapter 15 discusses detailed operations.

13.4.1 Operations from the Class Model

The reading and writing of attribute values and association links are implied by the class
model, and you need not show them explicitly. During analysis all attributes and associations
are assumed to be accessible.

13.4.2 Operations from Use Cases

Most of the complex functionality of a system comes from its use cases. During the construc-
tion of the interaction model, use cases lead to activities. Many of these correspond to oper-
ations on the class model.



234 Chapter 13 / Application Analysis

ATM example. Consortium has the activity verifyBankCode, and Bank has the activity
verifyPassword. You could implement Figure 13.5 with the operation verifyCashCard on
class ATM.

13.4.3 Shopping-List Operations

Sometimes the real-world behavior of classes suggests operations. Meyer [Meyer-97] calls
this a “shopping list,” because the operations are not dependent on a particular application
but are meaningful in their own right. Shopping-list operations provide an opportunity to
broaden a class definition beyond the narrow needs of the immediate problem.

ATM example. Shopping-list operations include:

account.close()

bank.createSavingsAccount(customer): account
bank.createChecking Account(customer): account
bank.createCashCard Auth(customer): cashCardAuthorization
cashCardAuthorization.add Account (account)

cashCardAuthorization.removeAccount (account)

cashCardAuthorization.close()

13.4.4 Simplifying Operations
Examine the class model for similar operations and variations in form on a single operation.
Try to broaden the definition of an operation to encompass such variations and special cases.
Use inheritance where possible to reduce the number of distinct operations. Introduce new
superclasses as needed to simplify the operations, provided that the new superclasses are not
forced and unnatural. Locate each operation at the correct level within the class hierarchy. A
result of this refinement is often fewer, more powerful operations that are nevertheless sim-
pler to specify than the original operations, because they are more uniform and general.
ATM example. The ATM example does not require simplification. Figure 13.12 adds
some operations to the ATM domain class model from Chapter 12.

13.5 Chapter Summary

The purpose of analysis is to understand the problem so that a correct design can be con-
structed. A good analysis captures the essential features of the problem without introducing
implementation artifacts that prematurely restrict design decisions.

There are two phases of analysis——domain and application. Domain analysis captures
general knowledge about an application. Domain analysis involves class models and some-
times state models but seldom has an interaction model. In contrast, application analysis fo-
cuses on major application artifacts that are important, visible to users, and must be approved
by them. The interaction model dominates application analysis, but the class and state mod-
els are also important.



13.5 Chapter Summary 235
EnteredOn Transaction
*| dateTime
1
EntryStation ]
Cashier Remote |AuthorizedBy
Z% Transaction | | Transaction
¥
%
f l Update
ATM CashierStation EnteredBy CashCard amount
cashOnHand : serialNumber kind
; 0..1 i
verifyCashCard Cashier * *
01 name
0.1 ] 1
Employs Card
! 1 1 Authorization
station ;
station employee assword
Code Code Code )
Consortium
Bank addAccount
, name card Issues removeAccount
verifyBankCode Code [ 01| close
bankCode verifyPassword = ¥
createSavingsAccount
! 0.1 | createCheckingAccount
=~ | createCashCardAuth 1
accoun@d_ej Customer
! Account |, || hgme
balance address
— creditLimit
0.1 type %
close I

Figure 13.12 ATM domain class model with some operations

The application interaction model shows the interactions between the system and the
outside world. First determine the precise scope—the system boundary. Then, define actors
for external objects that communicate directly with the system. Also, define use cases for ex-
ternally visible functionality. For each use case, make up scenarios for normal cases, varia-
tions, extreme cases, and exceptions. You can clarify complex use cases with activity
diagrams and organize the use cases and actors with relationships. Finally, check the use cas-
es against the domain class model to ensure that there are no inconsistencies.

Next augment the domain classes with application classes. Application classes arise
from user interfaces, boundary classes. and controllers. Carefully check the use cases and

scenarios to find them.



236 Chapter 13 / Application Analysis

The last phase of application analysis is to build an application state model. This state
model tends to be richer and reveals more behavior than does the domain state model. First
identify application classes with multiple states and study the interaction scenarios to find
events for these classes. The most difficult aspect is to reconcile the various scenarios and
detect overlap and closure of loops. As you complete the state model, check the state dia-
grams for consistency with each other, as well as the class and interaction models.

We emphasized the need for abstraction during domain analysis, and it is also important
for application analysis. Try to think expansively as you construct your models. Do not com-
mit an application to arbitrary business practices that may change over time. Instead. try to
build in flexibility that will anticipate and accommodate future changes.

activity diagram controller

actor scenario i
application analysis sequence diagram ‘
boundary class shopping-list operation
building the application ciass model system boundary

building the application interaction model use case

building the application state model user interface

Figure 13.13 Key concepts for Chapter 13

Bibliographic Notes

Meyer [Meyer-97] provides many useful insights into the principles underlying a good de-
sign. He advocates the use of data-directed bottom-up design. discovery of “shopping-list
operations,” and the lack of any “main program™ in a system. He makes effective use of as-
sertions, preconditions, and postconditions for specifying operations.

References

[Meyer-97] Bertrand Mever. Object-Oriented Software Construction, Second Edition. Upper Saddle
River, NJ: Prentice Hall. 1997.

Exercises

13.1 (4) Prepare scenarios for the variations and exception bullets in Section 13.1.6.

)

(6) Complete the Deposit, Withdrawal, and Query subdiagrams from Figure 13.10.

,._
W W
5%

(4) Figure E13.1 is a class diagram for Exercise |1.6a. Sender and Receiver are the only classes
with important temporal behavior. Construct a sequence diagram for the following scenario:
Sender tries to establish a connection to the receiver by sending a start-of-transaction packet.



Exercises 237

The receiver successtully reads the packet and replies with an acknowledgment. The sender
then transmits a start-of-file packet, which is acknowledged. Then, the file data is transmitted
in three acknowledged packets, followed by end of tile and end of transaction, which are also
acknowledged.

L Sender | | Packet LReceiver
— length | T 7 -
packetlD
packetType !
data |
checksum |
| I——— J
Z[‘ix
SR N } ]
SenderPacket ReceiverPacket

~ X
i .
|

[ 1

S

i

E 7
Mo i T 1 A
| StartOfTransaction | FileData | | l EndOfTransaction = | Acknowledge
! Yol !
{ I

13.6

r -] i
[ EndOfFile | NotAcknowiedge !
. 4 J

[StartOfFile

Figure E13.1 A class diagram for a file transfer system

(3) Prepare additional sequence diagrams for the previous example to include errors caused by
noise corruption of each type of sender packet. Revise your previous answer.

(5) Prepare a state diagram for a file transfer system from the sequence diagrams prepared in
Exercises 13.3 and 13.4,
(8) Prepare a state diagram for a bike odometer from the given scenarios.
B The user turns on the odometer on a bike that is moving.
The odometer displays the current time. The user presses the mode button.
The odometer displays the distance biked today. The user presses the mode button.
The odometer displays the high speed since reset. The user presses the mode button.
The odometer displays the riding time since reset. The user presses the mode button.
The odometer displays the distance since reset. The user presses the mode button.
The odometer displays the average speed since reset. The user presses the mode button.
The odometer displays the current time...
W The user turns on the odometer on a bike that is stationary.
The odometer displays the current time. The user presses the mode button.
The odometer displays the total distance biked. The user presses the mode button.
The odometer displays the total time biked. The user presses the mode button.
The odometer displays the distance biked today. The user presses the mode button.
The odometer displays the high speed since reset. The user presses the mode button.
The odometer displays the riding time since reset. The user presses the mode button.
The odometer displays the distance since reset. The user presses the mode button.



238 Chapter 13 / Application Analysis

The odometer displays the average speed since reset. The user presses the mode button.
The odometer displays the current time...

M The odometer displays the distance biked today.
The clock rolls over past midnight and begins a new day.
The odometer sets the distance biked today to zero.

M The user stops biking.
Four minutes elapse.
The odometer display dims.
The user presses the mode button.
The odometer lights up.

B The user holds the mode button.
The odometer sets all variables computed since reset to zero.

Consider the simple diagram editor from Exercises 12.3-12.8.
13.7 (2) Describe the system boundary for this application in a few sentences.
13.8 (2) Identify two actors for the application.

13.9 (4) List at least four use cases and define them with a one- or two-sentence bullet. Construct a
use case diagram.

13.10 (6) Organize commonality in the use cases with use case relationships. You can create new use
cases for common behavior. (Instructor’s note: You should give the students the answer to the
previous exercise.)

13.11 (4) Prepare a normal scenario for making the drawing in Figure E12.1. Include at least ten editor
operations from the problem description in Chapter 12. Do not worry about error conditions.

13.12 (3) Prepare three error scenarios, starting from the previous exercise.

13.13 (4) Prepare sequence diagrams for the scenarios you prepared in the previous exercise.

Consider the computerized scoring system from Exercises 12.9-12.13.
13.14 (2) Describe the system boundary for this application in a few sentences.
13.15 (2) Identify four actors for the application.

13.16 (5) Here are some use cases: register child, schedule meet, schedule season, score figure, judge
figure, and compute statistics. Define each one with a one- or two-sentence bullet. Construct a
use case diagram.

13.17 (3) Prepare a scenario for setting up the scoring system at the beginning of a season. Enter data
on teams, competitors. and judges. Prepare a schedule of meets for the season and select events

for each meet. Enter difficulty factors for figures. Include at least 2 teams, 6 competitors, 3 judg-
es. 3 meets, and 12 events. Do not worry about error conditions.

13.18 (3) Prepare three error scenarios. starting from Exercise 13.17.



Exercises 239

13.19 (3) Prepare a scenario for printing and processing preregistration forms for the scoring system.
In the scenario two children should change their address and another two children should indi-
cate that they are unable to attend. Assign a number to each contestant.

13.20 (6) Prepare an activity diagram for the following computation. Show swim lanes for competitor,
computer operator, judge, and scorekeeper.
The computer operator calls the competitor’s number as it appears on the display. The com-
petitor verifies her number and then performs the figure. The three judges hold up their scores.
A scorekeeper reads the scores. As they are read, the computer operator enters them into the
computer.

13.21 (3) Prepare a shopping list of operations for the scoring system and place them in a class dia-
gram.

13.22 (5) For each method listed in the previous exercise, summarize what the method should do.



14
System Design

After you have analyzed a problem, you must decide how to approach the design. During
system design you devise the high-level strategy—the system architecture—for solving the
problem and building a solution. You make decisions about the organization of the system
into subsystems, the allocation of subsystems to hardware and software, and major policy
decisions that form the basis for class design.

In this chapter you will learn about the many aspects that you should consider when for-
mulating a system design. We also list several common architectural styles that you can use
as a starting point. This list is not meant to be complete; new architectures can always be in-
vented. The treatment in this chapter is intended for small to medium software development
efforts; large complex systems. involving more than about ten developers, are limited by hu-
man communication issues and require a much greater emphasis on logistics. Most of the
suggestions in this chapter are suitable for non-O0 as well as OO systems.

14.1 Overview of System Design

During analysis, the focus is on whar needs to be done, independent of how it is done. During
design, developers make decisions about how the problem will be solved, first at a high level
and then with more detail.

System design is the first design stage for devising the basic approach to solving the
problem. During system design, developers decide the overall structure and style. The sys-
tem architecture determines the organization of the system into subsystems. In addition, the
architecture provides the context for the detailed decisions that are made in later stages. You
must make the following decisions.

B Estimate system performance. [14.2]
B Make areuse plan. [14.3]

240



14.2 Estimating Performance 241

Organize the system into subsystems. | 14.4]
Identify concurrency inherent in the problem. [14.5]
Aliocate subsystems to hardware. | 14.6]

Manage data stores. [14.7]

Handle global resources. [14.8]

Choose a software control strategy. [14.9]

Handle boundary conditions. [ 14.10]

Set trade-off priorities. [14.11]

Select an architectural style. {14.12]

You can often choose the architecture of a system by analogy to previous systems. Certain
kinds of architecture pertain to broad classes of problems. Section 14.12 surveys several
common architectures and describes their corresponding problems. Not all problems can be
solved by one of these architectures, but many can. You can construct additional architec-
tures by combining these forms.

14.2 Estimating Performance

Early in the planning for a new system you should prepare a rough performance estimate.
Engineers call this a “back of the envelope” calculation. The purpose is not to achieve high
accuracy. but merely to determine if the system is feasible. Getting within a factor of two is
usually sufficient. although what you can achieve depends on the problem. The calculation
should be fast and involve common sense. You will have to make simplifying assumptions.
Don’t worry about details—just approximate, estimate, and guess, if necessary.

ATM example. Suppose we are planning an ATM network for a bank. We might pro-
ceed as follows. The bank has 40 branches. Suppose there are an equal number of terminals
in supermarkets and other stores. Suppose on a busy day half the terminals are busy at once.
(We could assume all of the terminals are busy without changing the results much. The point
is to establish reasonable performance limits.) Suppose that each customer takes one minute
to perform a session, and that most transactions involve a single deposit or withdrawal. So
we estimate a peak requirement of about 40 transactions a minute, or about one per second.
This may not be precise, but it shows that we do not require unusually fast computer hard-
ware. The situation would be much different if we were estimating for an online bookseller
or stockbroker, in which case the computer hardware would become a big issue.

You can perform similar estimates for data storage. Count the number of customers, es-
timate the amount of data for each one, and multiply. In the case of a bank, the requirements
for data storage are more severe than for ATM computing power, but they are hardly enor-
mous. Again, the situation would be different for a satellite-based ground imaging system,
in which both data storage and access bandwidth would be key architectural issues.



242 Chapter 14 / System Design

14.3 Making a Reuse Plan

Reuse is often cited as an advantage of OO technology. but reuse does not happen automat-
ically. There are two very different aspects of reuse—using existing things and creating re-
usable new things. It is much easier to reuse existing things than to design new things for
uncertain uses to come. Of course, someone must have designed things in the past in order
for us to reuse them now. The point is that most developers reuse existing things, and only a
small fraction of developers create new things. Don’t feel that you should start with OO tech-
nology by building reusable things—that takes a great deal of experience.

Reusable things include models, libraries, frameworks, and patterns. Reuse of models is
often the most practical form of reuse. The logic in a model can apply to multiple problems.

14.3.1 Libraries

A library is a collection of classes that are useful in many contexts. The collection of classes
must be carefully organized, so that users can find them. Good organization takes a lot of
work, and it can be difficult to decide where to place everything. Online searching can help,
but is no substitute for careful organization. In addition, the classes must have accurate and
thorough descriptions to help users determine their relevance. [Korson-92] notes several
qualities of “good” class libraries.

B Coherence. A class library should be organized about a few, well-focused themes.

B Completeness. A class library should provide complete behavior for the chosen themes.

B Consistency. Polymorphic operations should have consistent names and signatures
across classes.

B Efficiency. A library should provide alternative implementations of algorithms (such as
various sort algorithms) that trade time and space.

M Extensibility. The user should be able to define subclasses for library classes.
B Genericity. A library should use parameterized class definitions where appropriate.

Unfortunately, problems can arise when integrating class libraries from multiple sources, as
shown below [Berlin-90]. Developers often disperse pragmatic decisions across classes and
inheritance hierarchies. Class libraries may adopt policies that are individually sensible, but
fundamentally incompatible with those of other class libraries. You cannot fix such pragmat-
ic inconsistencies by specializing a class or adding code. Instead, you must break encapsu-
lation and rework the source code. These problems are so severe that they will effectively
limit your ability to reuse code from class libraries.

B Argument validation. An application may validate arguments as a collection or indi-
vidually as entered. Collective validation is appropriate for command interfaces; the
user enters all arguments, and only then are they checked. In contrast, responsive user
interfaces validate each argument or interdependent group of arguments as it is entered.
A combination of class libraries, some that validate by collection and others that vali-
date by individual, would yield an awkward user interface.



14.3 Making a Reuse Plan 243

B Error handling. Class libraries use different error-handling techniques. Methods in one
library may return error codes to the calling routine. for example, while methods in an-
other library may directly deal with errors.

B Control paradigms. Applications may adopt event-driven or procedure-driven control.
With event-driven control the user interface invokes application methods. With proce-
dure-driven control the application calls user interface methods. It is difficult to com-
bine both kinds of user interface within an application.

B Group operations. Group operations are often inefficient and incomplete. For exam-
ple, an object-delete primitive may acquire database locks, make the deletion, and then
commit the transaction. If you want to delete a group of objects as a transaction, the class
library must have a group-delete function.

B Garbage collection. Class libraries use different strategies to manage memory alloca-
tion and avoid memory leaks. A library may manage memory for strings by returning a
pointer to the actual string, returning a copy of the string, or returning a pointer with
read-only access. Garbage collection strategies may also differ: mark and sweep, refer-
ence counting. or letting the application handle garbage collection (in C++, for exam-
ple).

B Name collisions. Class names, public attributes, and public methods lie within a global
name space, so you must hope they do not collide for different class libraries. Most class
libraries add a distinguishing prefix to names to reduce the likelihood of collisions.

14.3.2 Frameworks

A framework [Johnson-88] is a skeletal structure of a program that must be elaborated to
build a complete application. This elaboration often consists of specializing abstract classes
with behavior specific to an individual application. A class library may accompany a frame-
work, so that the user can perform much of the specialization by choosing the appropriate
subclasses rather than programming subclass behavior from scratch. Frameworks consist of
more than just the classes involved and include a paradigm for flow of control and shared
invariants. Frameworks tend to be specific to a category of applications; framework class li-
braries are typically application specific and not suitable for general use.

14.3.3 Patterns

A pattern is a proven solution to a geneini probior . viais s gt ms sarget different phases
of the software development lifecycle. There e paiterus 1or analysis, architecture, design,

and implementation. You can achieve reuse by using existing patterns, rather than reinvent-
ing solutions from scratch. A pattern comes with guidelines on when to use it, as well as
trade-offs on its use.

There are many benefits of patterns. One advantage is that a pattern has been carefully
considered by others and has already been applied to past problems. Consequently, a pattern
is more likely to be correct and robust than an untested, custom solution. Also when you use
patterns, you tap into a language that is familiar to many developers. A body of literature is



244 Chapter 14 / System Design

available that documents patterns, explaining their subtleties and nuances. You can regard
patterns as extending a modeling language—you need not think only in terms of primitives;
you can also think in terms of recurring combinations. Patterns are prototypical model frag-
ments that distill some of the knowledge of experts.

A pattern is different from a framework. A pattern is typically a small number of classes
and relationships. In contrast. a framework is much broader in scope (typically at least an
order of magnitude larger) and covers an entire subsystem or application.

ATM example. The notion of a transaction offers some possibility of reuse-—transac-
tions are a frequent occurrence in computer systems, and there is commercial software to
support them. There may also be an opportunity for reuse with the communications infra-
structure that connects the consortium to ATMs and bank computers.

14.4 Breaking a System into Subsystems

For all but the smallest applications, the first step in system design is to divide the system
into pieces. Each major piece of a system is called a subsystem. Each subsystem is based on
some common theme, such as similar functionality, the same physical location, or execution
on the same kind of hardware. For example. a spaceship computer might include subsystems
for life support, navigation, engine control, and running scientific experiments.

A subsystem is not an object nor a function but a group of classes, associations, opera-
tions, events, and constraints that are interrelated and have a well-defined and (hopefully)
small interface with other subsystems. A subsystem is usually identified by the services it

provides. A service is a gror - i iclated functions that share some common purpose, such as

essing 1O drawie '~ . performing arithmetic. A subsystem defines a coherent
v P : ~weim. Forexample, the file system within an operating sys-
(CT s tsubsy st wouipnises aset of related abstractions that are largely independent of

abstractions in other subsystems, such as memory management and process control.

Each subsystem has a well-defined interface to the rest of the system. The intertace spec-
ifies the form of all interactions and the information flow across subsystem boundaries but
does not specify how the subsystem is implemented internally. Each subsystem can then be
designed independently without affecting the others.

You should define subsystems so that most interactions are internal, rather than across
subsystem boundaries. This reduces the dependencies among subsystems. A system should
be divided into a small number of subsystems; 20 is probably too many. Each subsystem may
in turn be decomposed into smaller subsystems of its own.

The relationship between two subsystems can be client-server or peer-to-peer. In a cli-
ent-server relationship, the client calls on the server, which performs some service and re-
plies with a result. The client must know the server’s interface, but the server need not know
its clients’ interfaces because clients initiate all interactions.

In a peer-to-peer relationship, each subsystem may call on the others. A communication
from one subsystem to another is not necessarily followed by an immediate response. Peer-
to-peer interactions are more complicated, because the subsystems must know each other’s



14.4 Breaking a System into Subsystems 245

interfaces. Communications cycles can occur that are hard to understand and liable to subtle
design errors. Look for client-server decompositions whenever possible, because a one-way
interaction is much easier to build, understand, and change than a two-way interaction.

The decomposition of systems into subsystems may be organized as a sequence of hor-
izontal layers or vertical partitions.

14.4.1 Layers

A layered system is an ordered set of virtual worlds (a set of riers), each built in terms of the
ones below it and providing the implementation basis for the ones above it. The objects in
each layer can be independent, although there is often some correspondence between objects
in different layers. Knowledge is one-way only—a subsystem knows about the layers below
it. but has no knowledge of the layers above it. A client-server relationship cxists between
upper layers (users of services) and lower layers (providers of services).

In an interactive graphics system, for example, windows are made from screen opera-
tions, which are implemented using pixel operations. which execute as device VO opera-
tions. Each layer may have its own set of classes and operations. Each layer is implemented
in terms of the classes and operations of lower layers.

Layered architectures come in two forms: closed and open. In a closed architecture.
cach layer is built only in terms of the immediate lower layer. This reduces the dependencies
between layers and allows changes to be made most easily. because a layer’s interface affects
only the next layer. In an open architecture. a layer can use features of any lower layer to
any depth. This reduces the need to redefine operations at each level. which can result in a
more efficient and compact code. However, an open architecture does not obscrve the prin-
ciple of information hiding. Changes to a subsystem can affect any higher subsystem, so an
open architecture is less robust than a closed architecture. Both kinds of architectures are
useful: the designer must weigh the relative value of efficiency and modularity.

Usually the problem statement specifies only the top and bottom layers: The top is the
desired system and the bottom is the available resources ( hardware, operating system, exist-
ing libraries). If the disparity between the two is too great (as it often is), then you must in-
troduce intermediate layers to reduce the conceptual gap between adjoining layers.

You can port a system constructed in layers to other hardware/software platforms by re-
writing one layer. It is a good practice to introduce at least one layer of abstraction between
the application and any services provided by the operating system or hardware. Define a lay-
er of interface classes providing logical services and map them onto the concrete services
that are system dependent.

14.4.2 Partitions

Partitions vertically divide a system into several independent or weakly coupled sub-
systems, each providing one kind of service. For example, a computer operating system in-
cludes a file system, process control, virtual memory management, and device control. The
subsystems may have some knowledge of each other, but this knowledge is not deep and
avoids major design dependencies.



246 Chapter 14 / System Design

One difference between layers and partitions is that layers vary in their level of abstrac-
tion. In contrast, partitions merely divide a system into pieces, all of which have a similar
level of abstraction. Another difference is that layers ultimately depend on each other, usu-
ally in a client-server relationship through an open or closed architecture. In contrast, parti-
tions are peers that are independent or mutually dependent (peer-to-peer relationship).

14.4.3 Combining Layers and Partitions

You can decompose a system into subsystems by combining layers and partitions. Layers
can be partitioned, and partitions can be layered. Figure 14.1 shows a block diagram of a typ-
ical application, which involves simulation and interactive graphics. Most large systems re-
quire a mixture of layers and partitions.

application package

window graphics

user
dialog | screen graphics
control

simulation
package

pixel graphics

operating system

computer hardware

Figure 14.1 Block diagram of a typical application. Most large systems
mix layers and partitions.

Once you have identified the top-level subsystems, you should show their information
flow. Sometimes, all subsystems interact with all other subsystems, but often the flow is sim-
pler. For example, many computations have the form of a pipeline; a compiler is an example.
Other systems are arranged as a star, in which a master subsystem controls all interactions
with other subsystems. Use simple topologies when possible to reduce the number of inter-
actions among subsystems.

ATM example. Figure 14.2 shows the architecture of the ATM system. There are three
major subsystems: the ATM stations, the consortium computer, and the bank computers. The
topology is a simple star; the consortium computer communicates with all the ATM stations
and with all the bank computers (comm links). The architecture uses the station code and the
bank code to distinguish the phone lines to the consortium computer.

14.5 Identifying Concurrency

In the analysis model, as in the real world and in hardware, all objects are concurrent. In an
implementation, however, not all software objects are concurrent, because one processor



14.5 Identifying Concurrency 247

ATM Consortium Bank
stations computer computers
1
ATM .
Consortium %?;t?éenr
Cash comm
Card link Database
station comm
link
_Customer
User bank
— user code Card
interface Authorization
Transaction |- |- - - - - TransactionJ ————— =~ | Transaction

Figure 14.2 Architecture of ATM system. It is often helpful to make an informal
diagram showing the organization of a systern into subsystems.

may support many objects. In practice, you can implement many objects on a single proces-
sor if the objects cannot be active together. One important goal of system design is to identify
the objects that must be active concurrently and the objects that have mutually exclusive ac-
tivity. You can fold the latter objects onto a single thread of control, or task.

14.5.1 Identifying Inherent Concurrency

The state model is the guide to identifying concurrency. Two objects are inherently concur-
rent if they can receive events at the same time without interacting. If the events are unsyn-
chronized, you cannot fold the objects onto a single thread of control. For example, the
engine and the wing controls on an airplane must operate concurrently (if not completely in-
dependently). Independent subsystems are desirable, because you can assign them to differ-
ent hardware units without any communication cost.

You need not implement two subsystems that are inherently concurrent as separate hard-
ware units. The purpose of hardware interrupts, operating systems, and tasking mechanisms
is to simulate logical concurrency in a uniprocessor. Separate sensors must, of course, pro-
cess physically concurrent input, but if there are no timing constraints on response, then a
multitasking operating system can handle the computation. Often the problem statement
specifies that distinct hardware units must implement the objects.

ATM example. If the ATM statement from Chapter 11 contained the requirement that
each machine should continue to operate locally in the event of a central system failure (per-
haps with reduced transaction limits), then we would have no choice but to include a CPU
in each ATM machine with a full control program.



248 Chapter 14 / System Design

14.5.2 Defining Concurrent Tasks
Although all objects arc conceptually concurrent. in practice many objects in a system are
interdependent. By examining the state diagrams of individual objects and the exchange of
events among them, you can often fold many objects onto a single thread of control. A thread
of control is a path through « set of state diagrams on which only a single object at a time is
active. A thread remains within a state diagram uritil an object sends an event to another ob-
ject and waits for another event. The thread passes to the receiver of the event until it even-
tually returns to the original object. The thread splits if the object sends an event and
continues executing.

On each thread of control. only a single object at a time 1s active. You can implement
threads of control as tasks in computer systems.

ATM example. While the bank is verifying an account or processing a bank transaction.
the ATM machine is idle. If a central computer directly controls the ATM, we can combine
the ATM object with the bank transaction object as a single task.

14.6 Allocation of Subsystems

You must allocate each concurrent subsystem to a hardware unit. either a general-purpose

processor or a specialized functional unit as follows.

M Estimate performance nceds and the resources needed to satisty them.

B Choose hardware or software implementation for subsystems.

B Allocate software subsystems to processors to satisty performance needs and minimize
interprocessor communication.

B Determine the connectivity of the physical units that implement the subsystems.

14.6.1 Estimating Hardware Resource Requirements

The decision to use multiple processors or hardware functional units is based on a need for
higher performance than a single CPU can provide. The number of processors required de-
pends on the volume of computations and the speed of the machine. For example, a military
radar system generates too much data in too short a time to handle in a single CPU. even a
very large one. Many parallel machines must digest the data before analyzing a threat.

The system designer must estimate the required CPU processing power by computing
the steady-state load as the product of the number of transactions per second and the time
required to process a transaction. The estimate will usually be imprecise. Often some exper-
imentation is useful. You should increase the estimate to allow for transient effects. due to
random variations in load as well as to synchronized bursts of activity. The amount of excess
capacity needed depends on the acceptable rate of failure due to insufticient resources. Both
the steady-state load and the peak load are important.

ATM example. The ATM machine itself is relatively simple—all it must do is to pro-
vide a user interface and. possibly some local processing. At most a single CPU would sut-
fice for each ATM. The consortium computer is essentially just a routing machine—it



14.6 Allocation of Subsystems 249

receives ATM requests and dispatches them to the appropriate bank computer. A large net-
work might need to be partitioned in some way and involve multiple CPUs, so that the con-
sortium computer does not become a bottleneck. The bank computers perform data
processing and involve relatively straightforward database applications. The database ven-
dors have single-processor and multiprocessor versions of their products. and the appropriate
choice depends on the needed throughput and reliability.

14.6.2 Making Hardware-Software Trade-offs

Object orientation provides a good way for thinking about hardware. Each device is an object

that operates concurrently with other objects (other devices cr software). You must decide

which subsystems will be implemented in hardware and which in software. There are two
main reasons for implementing subsystems in hardware.

B Cost. Existing hardware provides exactly the functionality required. Today it is easier
to buy a floating-point chip than to implement floating point in software. Sensors and
actuators must be hardware. of course

B Performance. The system requires a higher performance than a general-purpose CPU
can provide, and more efficient hardware is available. For example, chips that perform
the fast Fourier transform (FFT) are widely used in signal-processing applications.

Much of the difficulty of designing a system comes from meeting externally imposed hard-

ware and software constraints. QO design provides no magic solution, but the external pack-

ages can be modeled nicely as objects. You must consider compatibility. cost, and
performance issues. You should also think about flexibility for future changes, both design
changes and future product enhancements. Providing flexibility costs something: the archi-
tect must decide how much it is worth.

ATM example. There are no pressing performance issues for the ATM application.

Hence general-purpose computers should suffice for the ATMs. consortium, and banks.

14.6.3 Allocating Tasks to Processors

The system design must allocate tasks for the various software subsystems to processors.

There are several reasons for assigning tasks to processors.

M Logistics. Certain tasks are required at specific physical locations, to control hardware,
or to permit independent operation. For example, an engineering workstation needs its
own operating system to permit operation when the interprocessor network is down.

B Communication limits. The response time or data flow rate exceeds the available com-
munication bandwidth between a task and a piece of hardware. For example, high per-
formance graphics devices require tightly coupled controllers because of their high in-
ternal data generation rates.

m Computation limits. Computation rates are too great for a single processor, so several
processors must support the tasks. You can minimize communication costs by assigning
highly interactive subsystems to the same processor. You should assign independent
subsystems to separate processors.



250 Chapter 14 / System Design

ATM example. The ATM does not have any issues with communication and computation
limits. The communication traffic and computation that an ATM user initiates are relatively
minor. However, there may be an issue with logistics. If the ATM must have autonomy and
operate when the communications network is down, then it must have its own CPU and pro-
gramming. Otherwise, if the ATM is just a dumb terminal that accesses the network and per-
forms all computation via the network, we can simplify ATM logic.

14.6.4 Determining Physical Connectivity

After determining the kinds and relative numbers of physical units, you must determine the
arrangement and form of the connections among the physical units.

B Connection topology. Choose the topology for connecting the physical units. Associa-
tions in the class model often correspond to physical connections. Client-server relation-
ships also correspond to physical connections. Some connections may be indirect; you
should try to minimize the connection cost of important relationships.

B Repeated units. Choose the topology of repeated units. If you have boosted perfor-
mance by including several copies of a particular kind of unit or group of units, you must
specify their topology. The class model is not a useful guide, because the use of multiple
units is primarily a design optimization not required by analysis. The topology of repeat-
ed units usually has a regular pattern, such as a linear sequence, a matrix, a tree, or a star.
You must consider the expected arrival patterns of data and the proposed parallel algo-
rithm for processing it.

M Communications. Choose the form of the connection channels and the communication
protocols. The system design phase may be too soon to specify the exact interfaces
among units, but often it is appropriate to choose the general interaction mechanisms
and protocols. For example. interactions may be asynchronous, synchronous, or block-
ing. You must estimate the bandwidth and latency of the communication channels and
choose the correct kind of connection channels.

Even when the connections are logical and not physical, you must consider them. For exam-

ple, the units may be tasks within a single operating system connected by interprocess com-

munication (IPC) calls. On most operating systems, such IPC calls are much slower than
subroutine calls within the same program and may be impractical for certain time-critical
connections. In that case, you must combine the tightly linked tasks into a single task and
make the connections by simple subroutine calls.

ATM example. Figure 14.2 summarizes physical connectivity. Multiple ATMs connect
to the consortium computer and then are routed to the appropriate bank computer. The topol-
ogy is a star where the consortium computer mediates communication.

14.7 Management of Data Storage

There are several alternatives for data storage that you can use separately or in combination:
data structures, files, and databases. Different kinds of data stores provide trade-offs among
cost, access time, capacity, and reliability. For example, a personal computer application



14.7 Management of Data Storage 251

may use memory data structures and files. An accounting system may use a database to con-
nect subsystems.

Files are cheap, simple, and permanent. However, file operations are low level, and ap-
plications must include additional code to provide a suitable level of abstraction. File imple-
mentations vary for different computer systems, so portable applications must carefully
isolate file-system dependencies. Implementations for sequential files are mostly standard,
but commands and storage formats for random-access files and indexed files vary. Figure
14.3 characterizes the kind of data that belongs in files.

B Data with high volume and low information density (such as archival files or his-
torical records).

B Modest quantities of data with simple structure.
B Data that are accessed sequentially.
M Data that can be fully read into memory.

Figure 14.3 Data suitable for files. Files provide a low-tech solution to data
management and should not be overlooked.

Databases, managed by database management systems (DBMSs), are another kind of
data store. Various types of DBMSs are available from vendors, including relational and OO.
DBMSs cache frequently accessed data in memory in order to achieve the best combination
of cost and performance from memory and disk storage. Databases make applications easier
to port to different hardware and operating system platforms. since the vendor ports the
DBMS code. One disadvantage of DBMSs is their complex interface—many database lan-
guages integrate awkwardly with programming languages. Figure 14.4 characterizes the
kinds of data that belong in a database.

Data that require updates at fine levels of detail by multiple users.
Data that must be accessed by multiple application programs.
Data that require coordinated updates via transactions.

Large quantities of data that must be handled efficiently.

Data that are long-lived and highly valuable to an organization.

Data that must be secured against unauthorized and malicious access.

Figure 14.4 Data suitable for databases. Databases provide heavyweight data manage-
ment and are used for most important business applications.

0O0-DBMSs have not become popular in the mass market. Consequently you should
consider them only for specialty applications that have a wide variety of data types or that



252 Chapter 14 / System Design

must access low-level data management primitives. These applications include engineering
applications, multimedia applications, knowledge bases. and electronic devices with embed-
ded software. For most applications that need a database, you should use a relational DBMS
(RDBMS). RDBMSs dominate the marketplace, and their features are sufficient for most ap-
plications. RDBMSs can also provide a very good implementation of an OO model, if they
are used properly—Chapter 19 presents the details.

ATM example. The typical bank computer would use a relational DBMS—they are
fast, readily available, and cost-effective for these kinds of financial applications.

The ATM might also use a database, but the paradigm for that is less obvious. Relational
and OO-DBMSs would both be possibilities. Many OO-DBMSs permit access to low-level
primitives, and a stripped-down database might enable mass production of ATM software at
a low cost. A stripped-down database might also simplify ATM operation. Alternatively,
RDBMSs are mature products with many features that might reduce development effort.

14.8 Handling Global Resources

The system designer must identify global resources and determine mechanisms for control-
ling access to them. There are several kinds of global resources.

B Physical units. Examples include processors. tape drives, and communication satellites.
B Space. Examples include disk space, a workstation screen, and the buttons on a mouse.
B Logical names. Examples include object IDs, filenames, and class names.

B Access to shared data. Databases are an example.

If the resource is a physical object, then it can control itself by establishing a protocol for
obtaining access. If the resource is a logical entity, such as an object ID or a database, then
there is danger of conflicting access in a shared environment. Independent tasks could simul-
taneously use the same object ID, for example.

You can avoid conflict by having a “guardian object”” own each global resource and con-
trol access to it. One guardian object can control several resources. All access to the resource
must pass through the guardian object. Allocating each shared global resource to a single ob-
ject is a recognition that the resource has identity.

You can also partition a resource logically, assigning subsets to different guardian ob-
jects for independent control. For example, one strategy for object ID generation in a parailel
distributed environment is to preallocate a range of possible IDs to each processor in a net-
work; each processor allocates the IDs within its preallocated range without the need for glo-
bal synchronization.

In a time-critical application, the cost of passing all access to a resource through a guard-
ian object is sometimes too high, and clients must access the resource directly. In this case,
locks can be placed on subsets of the resource. A lock is a logical object associated with some
defined subset of a resource that gives the lock holder the right to access the resource direct-
ly. A guardian object must still exist to allocate the locks, but after one interaction with the
guardian to obtain a lock the user of the resource can access the resource directly. This ap-
proach is more dangerous, because each resource user must be trusted to behave itself in its



14.9 Choosing a Software Control Strategy 253

access to the resource. Do not use direct access to shared resources unless it is absolutely
necessary.

ATM example. Bank codes and account numbers are global resources. Bank codes
must be unique within the context of a consortium. Account codes must be unique within the
context of a bank.

14.9 Choosing a Software Control Strategy

The analysis model shows interactions as events between objects. Hardware control closely
matches the analysis model. but there are several ways for implementing control in software.
Although all subsystems need not use the same implementation, it is best to choose a single
control style for the whole system. There are two kinds of control flows in a software system:
external control and internal control.

External control concerns the flow of externally visible events among the objects in the
system. There are three kinds of control for external events: procedure-driven sequential,
event-driven sequential, and concurrent. The appropriate control style depends on the avail-
able resources (language, operating system) and on the kind of interactions in the application.

Internal control refers to the flow of control within a process. It exists only in the imple-
mentation and therefore is neither inherently concurrent nor sequential. The designer may
choose to decompose a process into several tasks for logical clarity or for performance @if
multiple processors are available). Unlike external events, internal transfers of control, such
as procedure calls or intertask calls, are under the direction of the program and can be struc-
tured for convenience. Three kinds of control flow are common: procedure calls, quasi-con-
current intertask calls, and concurrent intertask calls. Quasi-concurrent intertask calls, such
as coroutines or lightweight processes, are programming conveniences in which multiple ad-
dress spaces or call stacks exist but only a single thread of control can be active at once.

14.9.1 Procedure-driven Control

In a procedure-driven sequential system, control resides within the program code. Proce-
dures request external input and then wait for it; when input arrives, control resumes within
the procedure that made the call. The location of the program counter and the stack of pro-
cedure calls and local variables define the system state.

The major advantage of procedure-driven control is that it is easy to implement with
conventional languages; the disadvantage is that it requires the concurrency inherent in ob-
jects to be mapped into a sequential flow of control. The designer must convert events into
operations between objects. A typical operation corresponds to a pair of events: an output
event that performs output and requests input and an input event that delivers the new values.
This paradigm cannot easily accommodate asynchronous input. because the program must
explicitly request input. The procedure-driven paradigm is suitable only if the state model
shows a regular alternation of input and output events. Flexible user interfaces and control
systems are hard to build with this style.

Note that all major OO languages, such as C++ and Java, are procedural languages. Do
not be fooled by the OO phrase message passing. A message is a procedure call with a built-



254 Chapter 14 / System Design

in case statement that depends on the class of the target object. A major drawback of conven-
tional OO languages is that they fail to support the concurrency inherent in objects. Some
concurrent OO languages have been designed, but they are not yet widely used.

14.9.2 Event-driven Control

In an event-driven sequential system, control resides within a dispatcher or monitor that the
language, subsystem, or operating system provides. Developers attach application proce-
dures to events, and the dispatcher calls the procedures when the corresponding events occur
(“callback™). Procedure calls to the dispatcher send output or enable input but do not wait for
it in-line. All procedures return control to the dispatcher, rather than retaining control until
input arrives. Consequently. the program counter and stack cannot preserve state. Procedures
must use global variables to maintain state, or the dispatcher must maintain local state for
them. Event-driven control is more difficult to implement with standard languages than pro-
cedure-driven control but is often worth the extra effort.

Event-driven systems permit more flexible control than procedure-driven systems.
Event-driven systems simulate cooperating processes within a single multithreaded task; an
errant procedure can block the entire application, so you must be careful. Event-driven user
interface subsystems are particularly useful.

Use an event-driven system for external control in preference to a procedure-driven sys-
tem whenever possible, because the mapping from events to program constructs is simpler
and more powerful. Event-driven systems are also more modular and can handle error con-
ditions better than procedure-driven svstems.

14.9.3 Concurrent Control

In a concurrent system, control resides concurrently in several independent objects, each a
separate task. Such a system implements events directly as one-way messages (110t OO lan-
guage “messages”) between objects. A task can wait for input, but other tasks continue exe-
cution. The operating systen resolves scheduling conflicts among tasks and usually supplies
a queuing mechanism, so that events are not lost if a task is executing when they arrive. If
there are multiple CPUs, then different tasks can actually execute concurrently.

14.9.4 Internal Control

During design, the developer expands operations on objects into lower-level operations on
the same or other objects. Internal object interactions are similar to external object interac-
tions, because you can use the same implementation mechanisms. However, there is an im-
portant difference—external interactions inherently involve waiting for events, because
objects are independent and cannot force other objects to respond; objects generate internal
operations as part of the implementation algorithm. so their form of response is predictable.
Consequently, you can think of most internal operations as procedure calls, in which the call-
er issues a request and waits for the response. There are algorithms for parallel processing,
but many computations are well represented sequentially and can easily be folded onto a sin-
gle thread of control.



14.10 Handling Boundary Conditions 255

14.9.5 Other Paradigms

We assume that the reader is primarily interested in procedural programming, but other par-
adigms are possible, such as rule-based systems, logic programming systems, and other
forms of nonprocedural programs. These constitute another control style in which explicit
control is replaced by declarative specification with implicit evaluation rules, possibly non-
deterministic or highly convoluted. Developers currently use such languages in limited ar-
eas, such as artificial intelligence and knowledge-based programming, but we expect their
use to grow in the future. Because these languages are totally different from procedural lan-
guages (including OO languages). the remainder of this book has little to say about them.

ATM example. Event-driven control is the appropriate paradigm for the ATM station.
The ATM services a single user, so there is little need for concurrent control. The ATM must
be responsive in its user interactions, and event-driven control is much better at that than pro-
cedure-driven control.

14.10 Handling Boundary Conditions

Although most of system design concerns steady-state behavior, you must consider bound-
ary conditions as well and address the following kinds of issues.

B Initialization. The system must proceed from a quiescent initial state to a sustainable
steady state. The system must initialize constant data, parameters, global variables,
tasks, guardian objects, and possibly the class hierarchy itself. During initialization only
a subset of the functionality of the system is usually available. Initializing a system con-
taining concurrent tasks is most difficult, because independent objects must not get ei-
ther too far ahead or too far behind other independent objects during initialization.

M Termination. Termination is usually simpler than initialization, because many internal
objects can simply be abandoned. The task must release any external resources that it
had reserved. In a concurrent system, one task must notify other tasks of its termination.

B Failure. Failure is the unplanned termination of a system. Failure can arise from user
errors, from the exhaustion of system resources, or from an external breakdown. The
good system designer plans for orderly failure. Failure can also arise from bugs in the
system and is often detected as an “impossible” inconsistency. In a perfect design, such
errors would never happen, but the good designer plans for a graceful exit on fatal bugs
by leaving the remaining environment as clean as possible and recording or printing as
much information about the failure as possible before terminating.

14.11 Setting Trade-off Priorities

The system designer must set priorities that will be used to guide trade-offs for the rest of
design. These priorities reconcile desirable but incompatible goals. For example, a system
can often be made faster by using extra memory, but that increases power consumption and
costs more. Design trade-offs involve not only the software itself but also the process of de-
veloping it. Sometimes it is necessary to sacrifice complete functionality to get a piece of



256 Chapter 14 / System Design

software into use (or into the marketplace) earlier. Sometimes the problem statement speci-
fies priority, but often the burden falls on the designer to reconcile the incompatible desires
of the client and decide how to make trade-offs.

The system designer must determine the relative importance of the various criteria as a
guide to making design trade-offs. The system designer does not make all the trade-offs, but
establishes the priorities for making them. For example, the first video games ran on proces-
sors with limited memory. Conserving memory was the highest priority, followed by fast ex-
ecution. Designers had to use every programming trick in the book, at the expense of
maintainability, portability, and understandability. As another example, mathematical sub-
routine packages run on a wide range of machines. Well-conditioned numerical behavior is
crucial to such packages, as well as portability and understandability. These cannot be sac-
rificed for fast development.

Design trade-offs affect the entire character of a system. The success or failure of the
final product may depend on how well its goals are chosen. Even worse, if no system-wide
priorities are established, then the various parts of the system may optimize opposing goals
(“suboptimization”), resulting in a system that wastes resources. Even on small projects, pro-
grammers often forget the real goals and become obsessed with “efficiency” when it is really
unimportant.

Setting trade-off priorities is at best vague. You cannot expect numerical accuracy
(“speed 53%, memory 31%. portability 15%, cost 1%™). Priorities are rarely absolute: for
example, trading memory for speed does not mean that any increase in speed, no matter how
small, is worth any increase in memory, no matter how large. We cannot even give a full list
of design criteria that might be subject to trade-offs. Instead, the priorities are a statement of
design philosophy. Subsequent design will stil] require judgment and interpretation when
trade-offs are actually made.

ATM example. The ATM station is a mass-market product. Consequently, the manu-
facturing cost is a concern, and the resulting product must have a polished user interface. The
software must be robust and resilient in the face of failure. Development cost is a lesser con-
cern, since the cost can be amortized across numerous copies.

14.12 Common Architectural Styles

Several prototypical architectural styles are common in existing systems. Each of these is
well suited to a certain kind of system. If you have an application with similar characteristics,
you can save effort by using the corresponding architecture, or at least using it as a starting
point for your design. Some kinds of systems are listed below.

B Batch transformation-—a data transformation executed once on an entire input set.
[14.12.1]

B Continuous transformation—a data transformation performed continuously as inputs
change. [14.12.2]

B Interactive interface—a system dominated by external interactions. [14.12.3]



14.12 Common Architectural Styles 257

B Dynamic simulation—a system that simulates evolving real-world objects. {14.12.4]
B Real-time system—a system dominated by strict timing constraints. {14.12.5]

M Transaction manager—a system concerned with storing and updating data. often in-
cluding concurrent access from different physical locations. [14.12.6]

This is not meant to be a complete list of known systems and architectures but a list of com-

mon forms. Some problems require a new kind of architecture, but most can use an existing

style or at least a variation on it. Many problems combine aspects of these architectures.

14.12.1 Batch Transformation

A batch transformation performs sequential computations. The application receives the in-
puts, and the goal is to compute an answer; there is no ongoing interaction with the outside
world. Examples include standard computational problems such as compilers, payroll pro-
cessing, VLSI automatic layout, stress analysis of a bridge, and many others. The state model
is trivial or nonexistent for batch transformation problems. The class model is important—
there are class models for the input, output, and the intervening stages. The interaction model
documents the computation and couples the class models. The most important aspect of a
batch transformation is to define a clean series of steps.

In the past, when we worked at GE R&D, one of our colleagues (Bill Premerlani) built
a compiler that received an ASCII file of graphical pictures as input and generated relational
database definition code as output. This work preceded the availability of commercial 00
modeling tools. Figure 14.5 shows the sequence of steps. The compiler had five class mod-
cls—one for the input, one for the output, and three for intermediate representations.

parse determine abstractto
text connectivity 00 model )
N

ASCII Graphics Connectivity Class Database
File Model Model Model Code

generate
db code

Figure 14.5 Sequence of steps for a compiler. A batch transformation is a sequential
input-to-output transformation that does not interact with the outside world.

The steps in designing a batch transformation are as follows.

B Break the overall transformation into stages, with each stage performing one part of the
transformation.

B Prepare class models for the input, output, and between each pair of successive stages.
Each stage knows only about the models on either side of it.

B Expand each stage in turn until the operations are straightforward to implement.
B Restructure the final pipeline for optimization.



258 Chapter 14 / System Design

14.12.2 Continuous Transformation

A continuous transformation is a system in which the outputs actively depend on changing
inputs. Unlike a batch transformation that computes the outputs only once, a continuous
transformation updates outputs frequently (in theory continuously, although in practice they
are computed discretely at a fine time scale). Because of severe time constraints, the system
cannot recompute the entire set of outputs each time an input changes (otherwise the appli-
cation would be a batch transformation). Instead, the system must compute outputs incre-
mentally. Typical applications include signal processing, windowing systems, incremental
compilers, and process monitoring systems. The class, state, and interaction models have
similar purposes as with the batch transformation.

One way to implement a continuous transformation is with a pipeline of functions. The
pipeline propagates the effect of each input change. Developers can define intermediate and
redundant objects to improve the performance of the pipeline. Some high-performance sys-
tems, such as signal processing, need to synchronize values within the pipeline. Such sys-
tems perform operations at well-defined times and carefully balance the flow path of
operations so that values arrive at the right place at the right time without bottlenecks.

Figure 14.6 shows the example of a graphics application. The application first maps
geometric figures in user-defined coordinates to window coordinates. Then it clips the fig-
ures to fit the window bounds. Finally it offsets each figure by its window position to yield
its screen position.

ey

Graphic Viewspace Window |- Screen
Model Model Model Image

Figure 14.6 Sequence of steps for a graphics application. A continuous
transformation repeatedly propagates input changes to the output.

The steps in designing a pipeline for a continuous transformation are as follows.

W Break the overall transformation into stages. with each stage performing one part of the
transformation.

B Define input, output. and intermediate models between each pair of successive stages.
as for the batch transformation.

B Differentiate each operation to obtain incremental changes to each stage. That is, prop-
agate the incremental effects of each change to an input through the pipeline as a series
of incremental updates.

B Add additional intermediate objects for optimization.



14.12 Common Architectural Styles 259

14.12.3 Interactive Interface

An interactive interface is a system that is dominated by interactions between the system and
external agents, such as humans or devices. The external agents are independent of the system,
so the system cannot control the agents. although it may solicit responses from them. An in-
teractive interface usually includes only part of an entire application, one that can often be han-
dled independently from computations. Examples of interactive systems include a forms-
based query interface, a workstation windowing system, and the control panel for a simulation.

The major concerns of an interactive interface are the communications protocol between
the system and the external agents, the syntax of possible interactions, the presentation of
output (the appearance on the screen, for instance), the flow of control within the system,
performance, and error handling. Interactive interfaces are dominated by the state model.
The class model represents interaction elements, such as input and output tokens and presen-
tation formats. The interaction model shows how the state diagrams interact.

The steps in designing an interactive interface are as follows.

B Isolate interface classes from the application classes.

W Use predefined classes to interact with external agents, if possible. For example, win-
dowing systems have extensive collections of predefined windows, menus, buttons,
forms, and other kinds of classes ready to be adapted to applications.

B Usec the state model as the structure of the program. Interactive interfaces are best im-
plemented using concurrent control (multitasking) or event-driven control (interrupts or
call-backs). Procedure-driven control (writing output and then waiting for input in-line)
is awkward for anything but rigid control sequences.

W Isolate physical events from logical events. Often a logical event corresponds to multi-
ple physical events. For example. a graphical interface can take input from a form, from
a pop-up menu, from a function button on the keyboard, from a typed-in command se-
quence, or from an indirect command file.

B Fully specify the application functions that are invoked by the interface. Make sure that
the information to implement them is present.

14.12.4 Dynamic Simulation

A dynamic simulation models or tracks real-world objects. Examples include molecular mo-
tion modeling, spacecraft trajectory computation, economic models, and video games. Sim-
ulations are perhaps the simplest system to design using an OO approach. The objects and
operations come directly from the application. There are two ways for implementing control:
an explicit controller external to the application objects can simulate a state machine. or ob-
jects can exchange messages among themselves, similar to the real-world situation.

Unlike an interactive system, the internal objects in a dynamic simulation do correspond
to real-world objects, so the class model is usually important and often complex. Like an in-
teractive system, the state and interaction models are also important.

The steps in designing a dynamic simulation are as follows.



260 Chapter 14 / System Design

M [dentify active real-world objects from the class model. These objects have attributes
that are periodically updated.

B Identify discrete events. Discrete events correspond to discrete interactions with the ob-
ject, such as turning power on or applying the brakes. Discrete events can be implement-
ed as operations on the object.

B Identify continuous dependencies. Real-world attributes may be dependent on other
real-world attributes or vary continuously with time. altitude, velocity, or steering wheel
position, for example. These attributes must be updated at periodic intervals, using nu-
merical approximation techniques to minimize quantization error.

W Generally a simulation is driven by a timing loop at a fine time scale. Discrete events
between objects can often be exchanged as part of the timing loop.

Usually, the hardest problem with simulations is providing adequate performance. In an ide-

al world, an arbitrary number of parallel processors would execute the simulation in an exact

analogy to the real-world situation. In practice, the system designer must estimate the com-

putational cost of each update cycle and provide adequate resources. Discrete steps must ap-

proximate continuous processes.

14.12.5 Real-time System

A real-time system is an interactive system with tight time constraints on actions. Hard real-
time software involves critical applications that require a guaranteed response within the
time constraints. In contrast, soft real-time software must also be highly reliable, but can oc-
casionally violate time constraints. Typical real-time applications include process control,
data acquisition, communications devices, device control, and overload relays.

Real-time design is complex and involves issues such as interrupt handling, prioritiza-
tion of tasks, and coordinating multiple CPUs. Unfortunately, real-time systems are fre-
quently designed to operate close to their resource limits, so that severe, nonlogical
restructuring of the design is often needed to achieve the necessary performance. Such con-
tortions come at the cost of portability and maintainability. Real-time design is a specialized
topic that we do not cover in this book.

14.12.6 Transaction Manager

A fransaction manager is a system whose main function is to store and retrieve data. Most
transaction managers deal with multiple users who read and write data at the same time.
They also must secure their data to protect it from unauthorized access as well as accidental
loss. Transaction managers are often built on top of a database management system
(DBMS)—this is a form of reuse. A DBMS has generic functionality for managing data that
you can reuse and need not implement. Examples of transaction managers include airline
reservations, inventory control, and order fulfillment.

The class model is dominant. The state model is occasionally important, especially for
specifying the evolution of an object as well as constraints and methods that apply at differ-
ent points in time. The interaction model is seldom significant.



14.13 Architecture of the ATM System 261

The steps in designing an information system are as follows.
B Map the class model to database structures. See Chapter 19 for advice.

B Determine the units of concurrency—that is, the resources that inherently or by specifi-
cation cannot be shared. Introduce new classes as needed.

B Determine the unit of transaction—that is, the set of resources that must be accessed to-
gether during a transaction. A transaction succeeds or fails in its entirety.

B Design concurrency control for transactions. Most database management systems pro-
vide this. The system may need to retry failed transactions several times before giving

up.

14.13 Architecture of the ATM System

The ATM system is a hybrid of an interactive interface and a transaction management sys-
tem. The entry stations are interactive interfaces—their purpose is to interact with a human
to gather information needed to formulate a transaction. Specifying the entry stations con-
sists of constructing a class model and a state model. The consortium and banks are primarily
a distributed transaction management system. Their purpose is to maintain data and allow it
to be updated over a distributed network under controlled conditions. Specifying the trans-
action management part of the system consists primarily of constructing a class model. Fig-
ure 14.2 shows the architecture of the ATM system.

The only permanent data stores are in the bank computers. A database ensures that data
is consistent and available for concurrent access. The ATM system processes each transac-
tion as a single batch operation, locking an account until the transaction is complete.

Concurrency arises because there are many ATM stations, each of which can be active
at any time. There can be only one transaction per ATM station, but each transaction requires
the assistance of the consortium computer and a bank computer. As Figure 14.2 shows, a
transaction cuts across physical units; the diagram shows each transaction as three connected
pieces. During design, each piece will become a separate implementation class. Although
there is only one transaction per ATM station, there may be many concurrent transactions per
consortium computer or bank computer. This does not pose any special problem, because the
database synchronizes access to any one account.

The consortium computer and bank computers will be event driven. Each of them
queues input events but processes them one at a time in the order received. The consortium
computer has minimal functionality. It simply forwards a message from an ATM station to a
bank computer and from a bank computer to an ATM station. The consortium computer must
be large enough to handle the transaction load. It may be acceptable to block an occasional
transaction, provided the user receives an appropriate message.

The bank computer is the only unit with any nontrivial procedures, but even those are
mostly just database updates. The only complexity might come from failure handling. The
bank computers must have capacity to handle the expected worst-case load, and they must
have enough disk storage to record all transactions.



262 Chapter 14 / System Design

The system must contain operations for adding and deleting ATM stations and bank com-
puters. Each physical unit must protect itself against the failure or disconnection from the rest
of the network. A database protects against loss of data. However, special attention must be
paid to failure during a transaction so that neither the user nor the bank loses money—this
may require a complicated acknowledgment protocol before committing the transaction. The
ATM station should display an appropriate message if the connection is down. The ATM must
handle other kinds of failure as well, such as exhaustion of cash or paper for receipts.

On a financial system such as this, fail-safe transactions are the highest priority. If there
is any doubt about the integrity of a transaction, then the ATM must abort the transaction with
an appropriate message to the user.

14.14 Chapter Summary

After analyzing an application and before beginning the class design, the system designer
must decide on the basic approach to the solution. The form of the high-level strategy for
building the system is called the system architecture.

Early in the planning for a new system you should estimate the performance. The inten-
tion is to have a rough idea of what to expect. You want to make sure that it is reasonable and
that there are no big surprises as development proceeds.

Next, prepare a reuse plan. Reuse is often cited as a benefit of OO technology, but it does
not happen automatically. There are two different aspects of reuse. Most developers should
focus on reusing existing models, libraries, trameworks, and patterns that are relevant to their
applications. In addition, elite developers can create artifacts for reuse by others.

A system can be divided into horizontal layers and vertical partitions. Each layer defines
a different abstract world that may differ completely from other layers. Each layer is a client
of services of the layer or layers below it and a server of services for the layer or layers above
it. Systems can also have partitions. each performing a general kind of service. Simple sys-
tem topologies, such as pipelines or stars, reduce complexity. Most systems are a mixture of
layers and partitions.

Inherently concurrent objects execute in parallel, and a single thread of control cannot
combine them: they require separate hardware devices or separate tasks in a processor. You
can combine nonconcurrent objects onto a single thread of control and implement them as a
single task.

A system must have enough processors and special-purpose hardware units to meet per-
formance goals. You should assign objects to hardware so that hardware use is balanced and
meets concurrency constraints. You can do this by estimating computational throughput and
allowing for queuing effects in configuring the hardware. You may want to use special-pur-
pose hardware for compute-intensive computations. One goal in partitioning a hardware net-
work is to minimize communications traffic between physically distinct modules.

Data stores can cleanly separate subsystems within an architecture and give application
data some degree of permanence. In general, memory data structures, files, and databases
can implement data stores. Files are simple, cheap, and permanent but may provide too low
a level of abstraction for an application and necessitate much additional programming. Da-



Bibliographic Notes 263

tabases provide a higher level of abstraction than files, but they too involve compromises in
terms of overhead costs and complexity.

The system designer must identify global resources and determine mechanisms for con-
trolling access to them. Some common mechanisms are: establishing a “guardian™ object
that serializes all access, partitioning global resources into disjoint subsets which are man-
aged at a lower level, and locking.

Hardware control is inherently concurrent, but software control can be procedure driven,
event driven, and concurrent. Control for a procedure-driven system resides within the pro-
gram code; the location of the program counter and the stack of procedure calls and local
variables define the system state. In an event-driven system control resides within a dispatch-
er or monitor; application procedures are attached to events and are called by the dispatcher
when the corresponding events occur. In a concurrent system. control resides concurrently
in multiple independent objects. Event-driven and concurrent implementations are much
more flexible than procedure-driven control.

Most of system design is concerned with steady-state behavior, but boundary conditions
(initialization, termination, and failure) are also important.

An essential aspect of system architecture is making trade-offs between time and space,
hardware and software, simplicity and generality, and efficiency and maintainability. These
trade-offs depend on the goals of the application. The system designer must state the priori-
ties, so that trade-off decisions during subsequent design will be consistent.

Several kinds of systems are frequently encountered for which standard architectural
styles exist. These include two kinds of functional transformations: batch computation and
continuous transformation; three kinds of time-dependent systems: interactive interface, dy-
namic simulation, and real-time; and a database system: transaction manager. Most applica-
tion systems are usually a hybrid of several forms, possibly one for each major subsystem.
Other kinds of architecture are possible.

architecture hardware requirements service
client-server inherent concurrency subsystem
concurrency layer system design
data management partition system topology
event-driven system peer-to-peer thread of control
framework reuse plan trade-off priorities

Figure 14.7 Key concepts for Chapter 14

Bibliographic Notes

Simple software applications do not require much systems engineering, but complex systems
must be decomposed and the parts assigned to the appropriate specialists. [Clements-02] pre-
sents a process for evaluating software architectures. Essentially a group of stakeholders
meet and prioritize criteria that the architecture should satisfy; they quantify the criteria with



264 Chapter 14 / System Design

specific scenarios. Then they analyze the architecture to determine its compliance with the
high-priority scenarios.

Patterns are a popular topic in the literature and the subject of a number of books. There
are patterns for analysis [Coad-95}, architecture [Buschmann-96] [Shaw-96], design [Gam-
ma-95], and implementation [Coplien-92]. There have also been a number of conferences
over the years that have focused on patterns, many of which have been sponsored by the Pat-
tern Languages of Programming [PLoP].

References

[Berlin-90] Lucy Berlin. When objects collide: Experiences with reusing multiple class hierarchies.
ECOOP/OOPSLA 1990 Proceedings, October 21-25, 1990, Ottawa, Ontario, Canada, 181-193.

[Buschmann-96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-Oriented Software Architecture: A Svstem of Patterns. Chichester, UK: Wiley, 1996,

[Clements-02] Paul Clements, Rick Kazman, and Mark Klein. Evaluating Software Architectures.
Boston: Addison-Wesley, 2002.

[Coad-95] Peter Coad, David North, and Mark Mayfield. Object Models: Strategies, Patterns, and Ap-
plications. Upper Saddle River, NJ: Yourdon Press, 1995.

[Coplien-92] James O. Coplien. Advanced C++ Programming Styles and Idioms. Boston: Addison-
Wesley. 1992.

[Gamma-95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: Ele-
ments of Reusable Object-Oriented Software. Boston: Addison-Wesley, 1995.

[Johnson-88] Ralph E. Johnson and Brian Foote. Designing reusable classes. Journal of Object-Ori-
ented Programming 1, 3 (June/July 1988), 22-35.

[Korson-92] Tim Korson and John D. McGregor. Technical criteria for the specification and evaluation
of object-oriented libraries. Software Engineering Journal (March 1992), 85-94.

[PLoP] jerry.cs.uiuc.edu/~plop

[Shaw-96] Mary Shaw and David Garlan. Software Architecture. Upper Saddle River, NJ: Prentice
Hall, 1996.

Exercises

14.1  (4) For each of the following systems. list the applicable style(s) of system architecture: batch
transformation, continuous transformation, interactive interface, dynamic simulation, real-time
system, and transaction manager. Explain your selection(s). For systems that fit more than one
style, group features of the system by style.

a. An electronic chess companion. The system consists of a chess board with a built-in com-
puter. lights, and membrane switches. The human player registers moves by pressing chess
pieces on the board, activating membrane switches mounted under each square. The com-
puter indicates moves through lights also mounted under each square. The human moves the
chess pieces for the computer. The computer should make only legal moves, should reject
attempted illegal human moves, and should try to win.

b. An airplane flight simulator for a video game system. The video game system has already
been implemented and consists of a computer with joystick and pushbutton inputs and an
output interface for a color television. Your job is to develop the software for the computer



Exercises 265

14.2

14.3

14.4

to display the view from the cockpit of an airplane. The joystick and pushbutton control the
airplane. The display should be based on a terrain description stored in memory. When your
program is complete, it will be sold on cartridges that plug into the video game system.

¢c. A floppy disk controller chip. The chip is going to use a microprogram for internal control.
You are concerned with the microprogram. The chip bridges the gap between a computer
and a floppy disk drive. Your portion of the control will be responsible for positioning the
read/write head and reading the data. Information on the diskette is organized into tracks and
sectors. Tracks are equally spaced circles of data on the diskette. Data within a track is or-
ganized into sectors. Your architecture will need to support the following operations: Find
track 0, find a given track, read a track, read a sector, write a track, and write a sector.

d. A sonar system. You are concerned with the portion of the system that detects undersea ob-
jects and computes how far away they are (range). This is done by transmitting an acoustic
pulse and analyzing any resulting echo. A technique called correlation is used to perform the
analysis, in which a time-delayed copy of the transmitted pulse is multiplied by the returned
echo and integrated for many values of time delay. If the result is large for a particular value
of time delay. it is an indication that there is an object with a range that corresponds to that
delay.

(3) Discuss how you would implement control for the applications described in the previous ex-
ercise.

(7) As the system architect for a new signal-processing product, you must decide how to store
data in real time. The product uses analog to digital convertors to sample an analog input signal
at the rate of 16,000 bytes/second (128,000 bits/second) for 10 seconds. Unfortunately, the
needed calculations are too time consuming to do as the samples are received, so you are going
to have to store the samples temporarily. The decision has already been made to limit the
amount of memory used for buffers to 64.000 bytes. The system has a floppy disk drive that
uses diskettes organized into 77 tracks for a total of 243,000 bytes of storage per diskette. It
takes 10 milliseconds to move the disk drive read/write head from one track to another and 83
milliseconds. on average, to find the beginning of a track once the head is positioned. The disk
drive will be positioned at the correct track prior to the start of data acquisition.

Two solutions to the problem are being considered: (1) Simply write the data samples on the
diskette as they become available. Why doesn’t this work? (2) Use memory as a buffer. Data
samples are placed in memory as they are acquired and written to the floppy disk as fast as pos-
sible on sequential tracks. Will this method work? Describe the method in more detail. How
much memory is needed for the buffer? How many tracks will be used on the diskette? Prepare
a few scenarios. Describe how the control might work.

(6) Consider a system for automating the drilling of holes in rectangular metal plates. The size
and location of holes are described interactively, using a graphical editor on a personal computer.
When the user is satisfied with a particular drawing, a peripheral device on the personal comput-
er punches a numerical control (N/C) tape. The tape can then be used on a variety of commer-
cially available N/C drilling machines that have moving drill heads and can change drill sizes.
You are concerned only with the editing of the drawings and the punching of the N/C tapes.
The tapes contain sequences of instructions to move the drill head, change drills, and drill. Since
it takes some time to move the drill between holes, and even longer to change drills, the system
should determine a reasonably efficient drilling sequence. It is not necessary to achieve the ab-
solute minimum time, but the system should not be grossly inefficient either. The drill head is
controlled independently in the x and y directions, so the time it takes to move between holes is



266

14.6

14.7

14.8

14.9

Chapter 14 / System Design

proportional to the larger of the required displacements in the x and the y direction. Prepare a
system architecture. How would you characterize the style of the system?

(5) Consider a system for interactive symbolic manipulation of polynomials. The basic idea is
to allow a mathematician to be more accurate and productive in developing formulas. The user
enters mathematical expressions and commands a line at a time. Expressions are ratios of poly-
nomials, which are constructed from constants and variables. Intermediate expressions may be
assigned to variables for later recall. Operations include addition, subtraction, multiplication,
division, and differentiation with respect to a variable.

Develop an architecture for the system. How would you characterize the style of the system?
How would you save work in progress to resume at a future time?

(4) An architecture for the system described in the previous exercise could involve the following
subsystems. Organize them into partitions and layers.

line syntax—scan a line of user input for tokens

. line semantics—determine the meaning of a line of input

command processing—execute user input, error checking

construct expression—build an internal representation of an input expression
apply operation—carry out an operation on one or more expressions

save work—save the current context

load work—read in previously saved context

substitute—substitute one expression for a variable in another expression
rattonalize—convert an expression to canonical form

B e a0 o

—

J- evaluate—replace a variable in an expression with a constant and simplify the expression

(6) Consider a system for editing, saving, and printing class diagrams and generating relational
database schema. The system supports only a limited subset of the class modeling notation—
classes with attributes and binary associations with multiplicity. The system also includes edit-
ing functions such as create class, create association, cut, copy. and paste. The editor must un-
derstand the semantics of class diagrams. For example. when a class rectangle is moved, the
lines representing any attached associations are stretched. If a class is deleted. attached associ-
ations are also deleted. When the user is satisfied with the diagram, the system will generate the
corresponding relational database schema. Discuss the relative advantages of a single program
that performs all functions versus two programs, one that edits class diagrams and the other that
generates database schema from class diagrams.

(6) In the previous exercise, both physical and logical aspects ot class diagrams must be con-
sidered. Physical aspects include location and sizes of lines, boxes, and text. Logical aspects in-
clude connectivity, classes, attributes, and associations. Discuss basing your architecture on the
following strategies. Consider the issues involved in editing and saving class diagrams as well
as generating database schema.

a. Model only the geometrical aspects of class diagrams. Treat logical aspects as derived.

b. Model both the geometrical and logical aspects of class diagrams.

(5) Another approach to the system described in Exercise 14.7 is to use a commercially avail-
able desktop publishing system for class diagram preparation instead of implementing your own
class diagram editor. The desktop editor can dump its output in an ASCII markup language. The
vendor supplies the grammar for the markup language.

Compare the two approaches. One approach is to build your own editor that understands the
semantics of class diagrams. The other is to use a commercially available desktop publishing



Exercises 267

system to edit class diagrams. What happens if new versions of the desktop publishing system
become available? Can you assume that the user prepares a diagram using a notation that your
database generator will understand? Is it worth the effort to implement functions such as cut,
copy, and paste that commercial systems already do so well? Who is going to help the users if
they run into problems? How is your system going to be supported and maintained? How soon
can you get the system completed?

14.10 (6) A common issue in many systems is how to store data so it is preserved in the event of power

14.11

loss or hardware failure. The ideal solution should be reliable, low-cost, small, fast, mainte-

nance free, and simple to incorporate into a system. Also, it should be immune to heat, dirt, and

humidity. Compromises in the available technology often influence the functional require-

ments. Compare each of the following solutions in terms of the ideal. Note that this is not an

exhaustive list of solutions.

a. Do not worry about it at all. Reset all data every time the system is turned on.

b. Never turn the power off if it can be helped. Use a special power supply, including backup
generators, if necessary.

c. Keep critical information on a magnetic disk drive. Periodically make full and/or incremen-
tal copies on magnetic tape.

d. Use a battery to maintain power to the system memory when the rest of the system is off. It
might even be possible to continue to provide limited functionality.

e. Use a special memory component, such as a magnetic bubble memory or an electronically
erasable programmable read-only memory.

f. Critical parameters are entered by the user through switches. Several types of switches are
commercially available for this use, including several toggle switches in a package that con-
nects the same way as an integrated circuit.

(7) For each of the following systems, select one or more of the strategies for data storage from
the previous exercise. In each case explain your reasoning and give an estimate (order of mag-
nitude) of how much memory, in bytes, is required:

a. Four-function pocket calculator. Main source of power is light. Performs basic arithmetic.

b. Electronic typewriter. Main source of power is either rechargeable batteries or alternating
current. Operates in two modes. In one mode. documents are typed a line at a time. Editing
may be performed on a line before it is typed. A liquid crystal display will display up to 16
characters for editing purposes. In the other mode. an entire document can be entered and
edited before printing. The typewriter should be able to save the working document for up
1o a year with the main power oft.

¢. System clock for a personal computer. Main power is direct current supplied by the per-
sonal computer when it is on. Provides time and date information to the computer. Must
maintain the correct date and time for at least five years with the main power off.

d. Airline reservation system. Main power is alternating current. Used to reserve seats on air-
line flights. The system must be kept running at all times, at all costs. I, for some reason,
the system must be shut off, no data should be lost.

e. Digital control and thermal protection unit for a motor. The device provides thermal pro-
tection for motors over a wide range of horsepower ratings by calculating motor temperature
hased on measured current and a simulation of motor heat dissipation. If the calculated motor
temperature exceeds safe limits, the motor is shut off and not allowed to be restarted until it
cools down. The main source of power is alternating current, which may be interrupted. The
system must provide protection as soon as it is turned on. Parameters needed for thermal



268 Chapter 14 / System Design

simulation are initially set at the factory, but provision must be made to change them, if nec-
essary, after the system is installed. Because the motor temperature is not measured directly,
it is necessary to continue to simulate the motor temperature for at least an hour after loss of
main power, in case power is restored before the motor cools.

14.12 (9) The design of file formats is a common task for system design. A BNF diagram is a conve-
nient way to express file formats. Figure E14.1 is a portion of a BNF diagram of a language for
describing classes and binary associations. Nonterminal symbols are shown in rectangles, and
terminal symbols are shown in circles or rectangles with rounded corners. With the exception
of character, the diagram defines all nonterminals. A diagram consists of classes and associa-
tions. A class has a unique name and many attributes. An association has an optional name and
two ends. An association end contains the name one of the classes being associated and multi-
plicity information. Textual information is described by quoted strings. A character is any
ASCII character except quote.

diagram ~
DIAGRAM
—{((O—((omenau ) O
— class
— association
class

©

_>@_,< CLASS)—’ name (,
~—— attribute <—j

association “——1
ASSOCIATION ) name end

( end @—>
name
O ——{om |0
\(J \ NAME string \)J
attribute
L O N ) i 2%
\E/ { ATTRIBUTE string ’K)/

ﬂ@—{ END D——> name

stringm

~ (;~ character <—J ~

Figure E14.1 BNF diagram for a language that describes classes and associations




Exercises 269

a. Use the language in Figure E14.1 to describe the class diagram in Figure E14.2.

b. Discuss similarities and differences between data in storage and data in motion. For exam-
ple. the description you prepared in the previous part could be used to store a class diagram
in a file or to transmit a diagram from one location to another.

¢. The language in this problem is used to describe the structure of class diagrams. Invent a lan-
guage to describe two-dimensional polvgons. Use BNF to describe your language. Describe
a square and a triangle in your language.

Point

Polygon | ! #

X
y

Figure E14.2 Class diagram of polygons

14.13 (6) A common problem encountered in digital systems is data corruption due to noise or hard-
ware failure. One solution is to use a cyclic redundancy code {CRC). When data is stored or
transmitted. a code is computed from the data and appended to it. When data is retrieved or re-
ceived, the code is recomputed and compared with the value that was appended to the data. A
match is necessary but not sufficient to indicate that the data is correct. The probability that er-
rors will be detected depends on the sophistication of the function used to compute the CRC.
Some functions can be used for error correction as well as detection. Parity is an example of a
simple function that detects single-bit errors.

The function to compute a CRC can be implemented in hardware or software. The choice
for a given problem is a compromise involving speed, cost, flexibility, and complexity. The
hardware solution is fast, but may add unnecessary complexity and cost to the system hardware.
The software solution is cheaper and more flexible. but may not be fast enough and may make
the system software more complex.

For each of the following subsystems, decide whether or not a CRC is needed. If so. decide
whether to implement the CRC in hardware or software. Explain your choices.

a. floppy disk controller

b. system to transmit data files from one computer to another cver telephone lines

¢. memory board on a computer board in the space shuttle

d. magnetic tape drive

e. validation of an account number (a CRC can be used to distinguish between valid accounts
and those generated at random)

14.14 (6) Consider the scheduler software in Exercises 12.16-12.19 and 12.20-12.23.

With scheduling software it is also important to manage security—that is, the schedules that
each user is permitted to read and write.

An obvious way to maintain security is to maintain a list of access permissions for each com-
bination of user and schedule. However, this can become tedious to monitor and maintain.

Another solution is to allow permissions to be entered also for a group. A user can belong to
multiple groups; each group may have multiple users and lesser groups. The users may access
schedules for which they have permission or for which their groups have permission.

Extend the class models from Exercises 12.19 and 12.23 for this model of security. (Instruc-
tor’s note: You should give the students our answers to Exercises 12.19 and 12.23.)



15
Class Design

The analysis phase determines what the implementation must do, and the system design
phase determines the plan of attack. The purpose of class design is to complete the defini-
tions of the classes and associations and choose algorithms for operations.

This chapter shows how to take the analysis model and flesh it out to provide a basis for
implementation. The system design strategy guides your decisions, but during class design.
you must now resolve the details. There is no need to change from one model to another. as
the OO paradigm spans analysis, design, and implementation. The OO paradigm applies
equally well in describing the real-world specification and computer-based implementation.

15.1 Overview of Class Design

The analysis model describes the information that the system must contain and the high-level
operations that it must perform. You could prepare the design model in a completely different
manner, with entirely new classes. Most of the time, however, the simplest and best approach
is to carry the analysis classes directly into design. Class design then becomes a process of
adding detail and making fine decisions. Moreover, if you incorporate the analysis model
during design, it is easier to keep the analysis and design models consistent as they evolve.

During design, you choose among different ways to realize the analysis classes with an
eye toward minimizing execution time, memory, and other cost measures. In particular, you
must flesh out operations, choosing algorithms and breaking complex operations into sim-
pler operations. This decomposition is an iterative process that is repeated at successively
lower levels of abstraction. You may decide to introduce new classes to store intermediate
results during program execution and avoid recomputation. However, it is important to avoid
overoptimization, as ease of implementation. maintainability, and extensibility are also im-
portant concerns.

OO design is an iterative process. When you think that the class design is complete at
one level of abstraction, you should consider the next lower level of abstraction. For each

270



